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Three Practical Ways to
Improve Your Network

Kevin Miller — Carnegie Mellon University

ABSTRACT

This paper presents three simple techniques for improving network service using relatively
unknown features of many existing networks. The resulting system provides greater reliability,
enhanced security, and ease of management. First, it addresses the application of IP anycast to
provide reliable recursive DNS service. Next, it explains the use of unicast reverse path forwarding
and its usefulness in preventing local nodes from originating packets with spoofed source
addresses. Finally, it explains how unicast reverse path forwarding can be used to quickly and
easily apply source address filters on your network. As an added benefit, some of these features
provide mechanisms to conform a network to Best Common Practices (BCP) of network operators.

Anycast DNS Service

Anycast [1] is an IP addressing technique where
unicast [P addresses are assigned to multiple hosts and
routes configured accordingly. Routers receiving
packets destined for anycast addresses select one of
potentially several valid paths to hosts configured with
the address. This technique can be used wherever uni-
cast IP routing exists, as anycast IP addresses are sim-
ply unicast addresses designated by network operators.
Here, we use anycast addressing to improve the relia-
bility of DNS service, load balance DNS requests
across a number of servers, minimize service down-
time due to maintenance, and automatically direct
requests to the topologically nearest server.

DNS Issues

Outages

Administrators of recursive DNS servers are well
acquainted with the volume of complaints that arise
when DNS services are unavailable. The domain name
system is certainly a critical piece of network infras-
tructure in networks large and small. When clients
lose their bridge to the system, network access quickly
suffers, as nearly every client network application uses
DNS to identify its server’s IP address. Additionally,
network servers may have several opaque uses of
DNS during normal processing. Thus, while clients
may not need DNS service after a connection is estab-
lished, the server might require DNS service to
respond to client requests.

Implementations of DNS resolver libraries typi-
cally allow the configuration of more than one DNS
server. This seemingly provides a means of coping
when a DNS server is unresponsive. Unfortunately,
these failover mechanisms are very rudimentary on
most operating systems, leading to extended outages
when servers are unavailable.

The most popular mechanism for using alternate
DNS servers is a mechanism we’ll call the ‘object

impermanence’ method. This method is characterized
by the following behavior. Upon receiving a request
for DNS resolution, the system identifies the primary
configured DNS server and sends the request to this
server. The resolver waits a predetermined period of
time for a response, ranging from 0-5 seconds in our
evaluation. Note that the resolver distinguishes
between a negative response (no answer available)
from the primary server and a total lack of response.
In the former case, this result is propagated to the
requesting application.

If no response is received within the timeout
period, the request is sent to the next server on the
server list and the timeout period begins anew. If the
server list is exhausted without receiving a response,
the system may consult internal tables (such as ‘hosts’
files) or return error information to the client. When
the next DNS resolution request is received from an
application, the system again starts by consulting the
first DNS server on the list, even if it has provided no
answer to previous queries. Thus the term ‘object
impermanence’: no history of failed requests is kept.
When the primary server is unavailable, each DNS
resolution request is met with a delay equal to the
response timeout, at minimum.

Further delays are added by operating systems’
IPv6 resolution mechanisms. With widespread IPv6
implementations appearing in mainstream releases,
many system resolvers perform queries for the IPv6
address of a hostname prior to requesting the IPv4
address [2]. Some systems have IPv6 address lookups
enabled by default, while other systems perform this
resolution after one-time configuration. Today, many
IPv6 requests quickly return with no results. The
resolver then retries the IPv6 lookup using each item
of the domain search list appended to the query in suc-
cession. Once these queries fail, the original query is
retried as an IPv4 address query.

Systems with the object impermanence behavior
try each specific query against the primary server and
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wait the response timeout period before querying the
backup servers. Thus, we formulate a general expres-
sion for the extra delay added when the primary server
is unavailable (assuming the second server is available
and IPv6 resolution is enabled):
ExtraDelay (secs) = [Query Timeout] X
([Searchlist Length] + 2)

While the delay to retrieve a single DNS response
may seem tolerable, a single application operation
often involves more than one query. Many applications
perform both a forward lookup to retrieve an address
for a hostname plus a reverse lookup to retrieve the
hostname associated with the IP address. Some appli-
cation configurations have further DNS requirements.
For example, the SSH daemon using local password
authentication requires only a single DNS request to
login. However, when authenticating against our cen-
tral Kerberos database and obtaining AFS access cre-
dentials, a single login skyrockets to requiring 10 DNS
resolutions. Using the expression above, the extra delay
added to an SSH login on our campus when the pri-
mary DNS server is unavailable is 50 seconds.

The behavior of DNS resolvers was tested on
eight operating systems, and the results of these tests
are in Table 1 below. Seven of the eight systems
exhibit the object impermanence behavior. The most
popular response timeout is one second (five systems
use this value), though two systems have a longer five
second timeout. Cisco 10S, on the other hand, sends
queries to all configured servers simultaneously. Win-
dows XP is the only system that retains some knowl-
edge of unreachable servers. After a one second time-
out on the first request, XP uses reachable servers
immediately on subsequent queries. Over time, the
dead servers are re-tested and once reachable, are used
in the configured order.

Server Address Changes

An additional problem faced by DNS operators
is the difficulty of moving DNS servers. Since, by def-
inition, recursive DNS servers must be configured by
IP address, when the DNS server IP address changes
each client must update its server address list. The
widespread use of DHCP helps minimize the difficulty
of changing these addresses, but there are inevitably
cases where DNS server information is statically
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configured. Before the use of anycast addresses at
Carnegie Mellon, server transitions could take
upwards of a year to complete as clients with old con-
figurations were identified and contacted.

The use of anycast DNS servers virtually elimi-
nates the hassle of changing DNS server addresses. As
new servers are added and old ones removed, traffic is
automatically redirected by routers and clients are
unaware of the particular server answering their DNS
requests. Additionally, an enterprise with multiple loca-
tions could elect to use the same anycast addresses in
all locations, further reducing the complexity of DNS
server configuration. Anycast servers could be located
in each location for low-latency resolution, backed up
by central servers. In fact, proposals have been floated
at the IETF to designate specific IPv4 addresses as
well-known anycast recursive DNS addresses, to fur-
ther reduce host configuration requirements.

The Solution
Introduction

Using anycast addressing techniques and host-
based routing daemons, we dramatically increase the
reliability of recursive DNS service. This reliability is
achieved by eliminating the dependence upon a single
machine to answer requests to a specific IP address.
Specifically, multiple servers that provide identical
DNS services are each configured with the anycast IP
address on an interface. When using these techniques,
a single unreachable host is of little consequence as
routers redirect all requests to working servers.

Designating Addresses

The first step in configuring this service is the
designation of certain unicast IP addresses as anycast
addresses. We recommend designating a small subnet
for use as anycast addresses. While this subnet is not
attached to any router interface, individual addresses
within the subnet are used to provide a particular ser-
vice. Specifically, it is undesirable for any client to
believe the anycast address is on the same subnet as
itself. This would lead to the client not forwarding
requests to the first-hop router and defeat the principal
strengths of the system. It is important the subnet is
identified well, though, as one of the benefits of any-
cast DNS comes from the unchanging nature of the

Operating System Impermanence? | Response Timeout
Cisco IOS 12.1(13)E6 Yes 0 sec
FreeBSD 5.1 Yes 5 sec
Linux 2.4.20 Yes 1 sec
Mac OS X 10.2.6 Yes 5 sec
OpenBSD 3.3 Yes 1 sec
Solaris 8 Yes 1 sec
Windows 2000-SP3 Yes 1 sec
Windows XP-SP1 No 1 sec

Table 1: Operating system DNS resolver behavior.
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anycast service address. Once the subnet is identified,
individual IP addresses within the subnet are allocated
for use with a particular anycast service.

Server Configuration

Each server that participates as a member of the
anycast service pool must have the designated anycast
address configured on a local interface. Typically, a
new virtual loopback interface is added and the any-
cast address is assigned to this interface. This provides
the greatest flexibility to operators, especially if the
host has multiple physical interfaces. If the anycast
address is assigned as a secondary address of a physi-
cal interface, it would be unusable if the physical
interface was inactive.

The DNS server software must also recognize
and listen to network requests on the anycast address.
In most cases, this is as simple as starting the server
software after the address has been configured.
Depending upon the configuration, though, the
address may need to be explicitly listed. In environ-
ments where anycast is the only valid method of
querying the DNS servers, administrators may wish to
specifically reject requests on the non-anycast
addresses. This prevents any accidental reliance upon
the unique unicast address of the server.

Enabling Routing

Once the servers are configured to service DNS
requests using the anycast IP addresses, the routers
must be setup to direct packets to one of the anycast
servers. The simplest such configuration is to directly
configure the anycast addresses as static routes on
each server’s first-hop router. Each static route must
then be distributed through the intra-domain routing
protocol. The static routes are added as /32 (“‘host™)
routes with the next-hop address being the unique
address on the server’s physical interface.

While static routing does provide anycast ser-
vice, further enhancements can be made. Specifically,
by running a host-based routing daemon on each DNS
server, the entire system is more robust and reliable. In
this case, each server announces a route to its anycast
address(es) using the intra-domain routing protocol.
This route is then propagated through the routing
domain, subject to the constraints of the IGP. Routers
within the domain will select the best path to a server
announcing the anycast address.

The primary benefit of using a host-based router
is the dramatically reduced response time from a
server becoming unreachable. In the case of static
routes, some DNS requests would continue to be for-
warded to the unreachable server until the static route
is manually removed. Using a host-based router, the
first-hop router will identify (by the lack of protocol
exchange) when the server is unreachable. At that
time, routes originated by the host will be dropped
from the routing table, causing routers to forward traf-
fic to other working servers.
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Benefits and Limitations

While anycast is a good solution for providing
recursive DNS service, it is not a panacea for reliabil-
ity of all network services. Because routers may have
multiple choices for the path of anycast-destined pack-
ets, sequential packets may follow different paths and
arrive at different hosts. Therefore, anycast is best
used only for stateless protocols, such as DNS, Ker-
beros, and syslog. If a protocol provides a mechanism
for discovery of unique addresses within the first
packet exchange, it may be suitable to use anycast for
load balancing and reliability. However, it is also
assumed that the overhead to service each request is
roughly equivalent; that is, there is little need to bal-
ance traffic based upon server load or usage.

The configuration described here assumes equal
cost weighting of network routes to the various
servers. This implies that requests will automatically
be forwarded to their nearest working server. When
the path to multiple servers is equivalent, equal cost
multi-path routes will be used if supported by the
router and routing protocol. In this case, the router will
choose a route for each packet from the best routes.
Administrators could also use unequal weightings on
anycast IP routes to control the parameters by which
certain servers are used.

This document addresses the use of anycast
within an administrative domain. Inter-domain anycast
is also in active use, as well. The “F” root server, for
example, is using anycast addressing to distribute
DNS root server load among several servers [3]. Addi-
tionally, it is used to setup DNS root servers in multi-
ple locations around the globe, reducing resolution
time for clients in areas without a high concentration
of root servers.

Deployment Example

The deployment of anycast recursive DNS ser-
vice at Carnegie Mellon was completed in December,
2002. To begin, we identified a range of addresses
(within IP space in our control) that we would use for
anycast-enabled services: 128.2.1.0/26. We then identi-
fied two addresses within this range for anycast recur-
sive DNS service: 128.2.1.10 and 128.2.1.11. Each site
deploying anycast services should take care to desig-
nate addresses within IP blocks in their control.

The system was configured on our four existing
DNS servers, but clients were slowly transitioned to
use the anycast service addresses. The entire process
was completed with only a few problems that were
quickly resolved. Due in part to the high reliability of
BIND 9 [4], since February we’ve had continuous
anycast DNS service. This is done while having stag-
gered monthly reboots of our servers and physically
relocating one machine. A basic diagram of our any-
cast DNS service is in Figure 1 below. The unique
addresses of the DNS servers are listed beneath the
anycast address in the figure.
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Anycast DNS using Host Based Routing Daemons

rtr0 ‘\

0 E2 128.2.1.10/32 [110/20] via rtr
[110/20] via rtr2
[110/20] via rtr3

DNS1 DNS2 DNS3 DNS4
128.2.1.10 128.2.1.10 128.2.1.10 128.2.1.10
128.2.4.21 128.2.64.2 128.2.32.37 128.2.10.50

Figure 1: Four DNS servers answer requests to
128.2.1.10.

The two problems encountered were simply part
of the process of understanding the parameters neces-
sary to keep the system continuously available. The
first issue was with an ingress filter on the router con-
necting one DNS server’s alternate link. The system
worked until the dual-homed machine’s default route
changed, sending outgoing packets over the second
link. The router ingress filter had not been updated
with the anycast service addresses and was thus block-
ing traffic from the server. The other issue that admin-
istrators must remember is that if the name server is
stopped, the router daemon must be shutdown or the
anycast routes removed. In practice, this has been
done manually as we’ve had no cases of the name
server stopping except when requested. An automated
mechanism for stopping the router when the name
server is unresponsive would be beneficial, though.

Host Configuration

Each host that is a member of the anycast service
pool is configured with the anycast service addresses
as additional loopback addresses. On our Linux
servers, these addresses are assigned to interfaces
named ‘lo:1” and ‘lo:2’, which are initialized and
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configured at boot time. The configuration of these
interfaces is shown in Figure 2 below.

Machines with multiple interfaces to diverse net-
works have additional configuration requirements.
Namely, the host’s routing table is (as expected) used
to direct IP packets out a given interface. Typically
devices are configured with a single default route. In
normal operation, this means that packets might be
received on both interfaces (as our host-base router
announces the anycast routes through both interfaces).
However, most responses will follow the default route
through one interface. This is perfectly functional,
except when the interface or next hop of the default
route is unreachable. Because the default route is stati-
cally configured, the machine will continue to send
traffic through the now-useless interface.

The solution is to remove the static default route
from the kernel routing table and allow the host-based
routing daemon to keep the kernel default route fresh.
If the originator of the best default route goes away,
the default route from the alternate interface is used
instead. Another problem arises, though, when the
routing daemon is not running. In this case, there is no
default route in the kernel routing table and an accom-
panying degraded network connection. Our solution to
this problem lies within a utility started at boot time
that monitors the kernel’s default route. When the
routing daemon is functioning, it removes any static
default routes and records them for future use. If the
routing daemon is stopped, the original default routes
are re-added to the kernel routing table.

In named.conf:

options {
listen-on { 128.2.1.10; 128.2.1.11; };
}

Figure 3: Limiting nameserver query access.

Service Configuration

Because our existing DNS servers were re-used
as anycast DNS hosts, we did not explicitly remove
access to the unique server addresses. Thus, no
changes were necessary to the configuration of our
nameserver, BIND 9. New servers added to the anycast
service pool, however, are configured to only accept
queries on the anycast addresses. This prevents acci-
dental use of the host’s unique IP address and makes it
possible to easily remove hosts without any worry that
client machines will suffer. The configuration fragment
to limit the query access in BIND 9 is shown in Figure
3. Administrators should substitute the site anycast
DNS addresses for our addresses in the fragment.

lo:1 Link encap:Local Loopback

inet addr:128.2.1.10 Mask:255.255.255.255

UP LOOPBACK RUNNING MTU:16436

lo:2 Link encap:Local Loopback

Metric:1

inet addr:128.2.1.11 Mask:255.255.255.255

UP LOOPBACK RUNNING MTU:16436

Metric:1

Figure 2: Configuration of Loopback interfaces in Linux.
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Routing Configuration

While our IGP is OSPF [5], the techniques used
to configure and announce the anycast host routes are
similar in other routing protocols. We chose the
Quagga [6] (descendent of Zebra) routing daemon as
our host router due to its open source license and sup-
port for OSPF. Additionally, Quagga configuration
files are similar to Cisco IOS configurations, a format
we are accustomed with. Quagga operates with one
central daemon process that maintains interface and
global system configuration parameters. Supported
routing protocols run in a separate daemon process for
each protocol. In our case, then, each DNS server runs
two processes: the ‘zebrad’ central process, and the
‘ospfd’ process to associate with the backbone routers.
A home-grown script reads basic configuration param-
eters of an anycast host and generates appropriate con-
figuration files at boot time. This makes it very easy to
configure additional anycast addresses as necessary.

The anycast addresses are configured as static
host routes in the main Quagga configuration. The
OSPF configuration enables physical interfaces in an
OSPF NSSA area and redistributes the static anycast
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DNS routes into the OSPF area. A redistribution filter
provides protection against announcement of unin-
tended routes through the server. Fragments of the
configuration files are shown in Figure 4 below.

The use of OSPF Not-So-Stubby Areas [7]
(NSSAs) is deliberate. In some cases, our anycast
DNS servers are multi-homed for additional redun-
dancy and network locality. However, we explicitly do
not want the servers used as a path between backbone
routers. Server interfaces are configured in separate
NSSA areas and hear only a default route from the
backbone area. The relevant configuration parameters
for the upstream Cisco routers in our network are
shown in Figure 5.

Finalizing Deployment

After configuring each server and the upstream
routers, we verified that the hosts and routers are prop-
erly exchanging OSPF routing information. Addition-
ally, we verified the valid host routes for the anycast
addresses and that servers were correctly answering
requests to the anycast addresses. Once complete, we
updated the DNS server parameters assigned by DHCP
to clients and announced the new server addresses.

In quagga.conf:

interface ethO

ip address 128.2.4.21/26
!

interface lo:1l

ip address 128.2.1.10/32
!

interface lo:2

ip address 128.2.1.11/32

In ospfd.conf:

interface ethO

ip ospf authentication message-digest
ip ospf message-digest-key 1 md5 [key]
!

router ospf

ospf router-id 128.2.4.21

ospf abr-type cisco

compatible rfcl583

area 128.2.4.0 authentication message-digest

area 128.2.4.0 nssa

network 128.2.4.21/26 area 128.2.4.0
redistribute connected
distribute-list 50 out connected

|

access-1list 50 permit host 128.2.1.10
access-1list 50 permit host 128.2.1.11

Figure 4: Quagga configuration file fragments.

Upstream Cisco Router:
router ospf 1

area 0.0.0.0 authentication message-digest

area 128.2.4.0 authentication message-digest
area 128.2.4.0 nssa default-information-originate no-summary

network 128.2.4.0 0.0.0.63 area 128.2.4.0
network 128.2.0.0 0.0.255.255 area 0.0.0.0

Figure 5: Cisco Router configuration.
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Summary

IP anycast can substantially improve the reliability
of recursive DNS service and ease server management
tasks. When multiple DNS servers are configured with
host-based routing daemons, the system’s responsive-
ness to server or network failure can be measured in
mere seconds. Given the current client resolver imple-
mentations, a fast response to such failures dramatically
reduces the DNS resolution delays. Anycast is a
remarkably easy technology to deploy, and we believe
that can be successfully used in many environments.

Unicast Reverse Path Forwarding

One feature emerging in router hardware and
software is unicast reverse path forwarding (“uRPF”’).
Enabling uRPF on every interface of the network edge
improves the security of the entire Internet through
source address verification. Though it requires almost
no operator effort to enable, many operators are
unaware of its benefits. Source address verification
prevents machines from sending packets with clearly
forged source addresses, quickly stopping some
classes of network attacks. It also minimizes the diffi-
culty in tracking other denial of service attacks, as
packets have validated source addresses. In short,
there are compelling reasons that proactive networks
should use unicast reverse path forwarding.

Need for Source Address Verification

As the popularity and reach of the Internet con-
tinues to grow, the number of individuals actively
seeking methods to exploit vulnerabilities in the
infrastructure rises as well. While this is good for the
long term security of the network, sometimes the fun-
damental principles upon which we operate networks
are challenged. One of these challenges has been to
build mechanisms for verifying the source address of
IP packets being forwarded through a router. Until
denial of service (DoS) and distributed DoS (DDoS)
attacks began occurring with regularity, there was little
incentive to develop widespread and easy mechanisms
to verify a packet’s source address.

While distributed denial of service attack strate-
gies use diverse methods of achieving their goal, some
of these strategies involve generating IP packets with
a source address other than an accurate address of the
attacking host. Some attacks, such as the Smurf [8]
attack, set the source address to the attack target.
Using IP directed broadcasts, a single attack packet
can cause thousands of machines to respond to the
faked source address. The Smurf attack thus employs
an amplifier to make the attack more potent. Other
attack strategies involve simply randomizing the
source address field to make an attack harder to trace
back to a specific point of access to the network.

As the frequency of these attacks rises, so does
the interest in encouraging the implementation of
source address verification (SAV) in routers. This led
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to network operators and the IETF publishing Best
Common Practice #38 [9] in May 2000, following
growing concerns after the Teardrop [10] and Smurf
attacks began in late 1997. This document recom-
mends that network operators implement SAV mecha-
nisms on the edge of the network using traditional
‘access list” methods of filtering packets. At the same
time, work began on developing automated methods
of implementing SAV.

Verification Mechanisms

The basic question in applying address verifica-
tion is what source addresses are expected to be
inbound to the router on a particular interface. This is
information that the network engineers might know
but must be able to express to the routers in conve-
nient ways. BCP38 recommends the use of filters on
edge interfaces that specify the permitted IP ranges of
source addresses. This is a fine strategy; router filters
are well understand and lend themselves to this use.
However, such filters are only appropriate at the net-
work edge, as otherwise the number and complexity of
IP ranges that would need to be specified in a filter
would be prohibitive. Generally, the expected source
addresses on network edge interfaces can be expressed
with a small number of IP prefix statements.

Some motivated engineers have automated [11]
the process of filtering addresses that should not
appear anywhere on the Internet (‘“bogons”), for the
purpose of using better access lists on core router inter-
faces. This strategy is a definite improvement, but suf-
fers many drawbacks. It is almost certainly incomplete,
as it relies only upon the IANA records of allocated IP
address space. Thus, source addresses from ranges not
in active use will be permitted to pass. Additionally,
these filters can be difficult to maintain due to the
methods available for changing access lists on routers.
Finally, if the filter is not kept up to date, it can quickly
become stale and prevent valid traffic from passing.
Some operators became painfully aware [12] of stale
filters when the 69/8 IPv4 space was recently allo-
cated, as they were assigned IP address space that
could not contact some Internet-connected hosts.

Other proposed strategies for address verification
call for the use of special address verification tables in
routers. The SAVE [13] protocol, for example, calls
for additional communication between routers to
exchange prefix path information. This differs from
current inter-domain routing, as BGP routers select the
best path to each destination and forward only this
path to neighbor routers [14]. While additional inter-
router messages might help solve the problem, ven-
dors have not readily implemented such protocols.
There are concerns about the effectiveness of such
protocols in the absence of widespread utilization, as
well as the additional overhead in implementing,
securing, and running another protocol.

A solution that does not rely on static filter con-
figuration is desired. While proactive sites might
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deploy filters, for maximum penetration of SAV it is
clear that there must be automatic methods of enabling
it. Automatic verification mechanisms, however, still
require a policy source to identify permitted source
addresses. Ideally, this policy source must be dynamic,
automatically reacting to network changes and block-
ing only illegitimate traffic. Finally, it must be nearly
effortless on the part of most network operators to
implement.

Unicast Reverse Path Forwarding

One method, unicast reverse path forwarding
strict mode (URPF-SM), promises to reduce adminis-
trative overhead and make source address verification
feasible at more places of the network. Borrowing from
the extensive use of reverse path forwarding checks in
multicast routing, uRPF acts as an additional ingress
filter on router interfaces. Specifically, routers will look
up the source address of inbound packets in the unicast
forwarding information base (FIB) to identify the next
hop interface. If there is a route to the address via the
same interface that the packet was received on, the
packet is allowed to enter the router. Otherwise, the
packet is rejected. This processing is shown below in
Figure 6. Using uRPF, operators are free to define
additional ingress filter lists, but no filter is required.

Because the mechanism uses the unicast for-
warding base as the policy source, once administrators
have setup a working network, address verification at
the extreme edge is as simple as enabling uRPF on
each interface. As network routes change, the filter is
kept up to date without any operator involvement.
However, it is important that correct forwarding
entries exist to all potential source addresses on a par-
ticular interface. The important distinction is that of
valid routes to a host versus the best route to the host.
Only the best route(s) are installed into the forwarding
table, which uRPF uses as its policy source. On intra-
domain networks, there is typically no cause for con-
cern in this regard. However, edge interfaces connect-
ing dually-homed machines may need to be carefully
considered. Fortunately, some implementations pro-
vide an unconditional acceptance filter (uURPF ACL).
That is, packets that would be otherwise rejected but
match the configured filter will be forwarded.
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While uRPF-SM is a good solution for address
verification on the network edge, it is still unsuitable
for use in the core. Due to network engineering
requirements, packets may use asymmetric paths to
travel between two hosts. In this case, since the for-
warding information base contains only best-path
routes, uRPF would not verify the source address and
reject the packet. Because of a strong desire to provide
even minimal SAV on internal nodes, an alternative to
strict mode uRPF was introduced. Known as loose-
mode uRPF (uRPF-LM)), it requires only that the route
to a particular network exist in the forwarding base. It
does not require that the ingress interface match the
next hop interface identified by the forwarding table
entry. This provides a good alternative to the use of
interface-based bogon access lists, as loose-mode
uRPF will perform similar verification without requir-
ing updates to the access lists (especially if bogon
route filters are in place.)

Configuring

The basic steps for configuring unicast reverse
path forwarding on a router are below. Specific con-
figuration of these features on two router platforms is
listed in Table 2.

¢ Ensure that IP unicast routing is properly con-
figured and stable: For each router interface,
identify all valid source addresses from the
connected network and verify that routes to the
interface exist in the forwarding table. This is
primarily a concern on edge interfaces.

® Configure access lists for unconditional accep-
tance of specific source addresses as necessary.

® On edge router interfaces, specify uRPF strict
mode.

® On core interfaces, specify uRPF loose mode.

Summary

Unicast reverse path forwarding provides an easy
and self-maintaining mechanism for source address
verification. Verification is a small but important piece
in protecting the Internet infrastructure. In non-transit
edge networks (most enterprises, for example), imple-
menting uRPF-SM on edge interfaces should become
standard operating procedure. On core interfaces in
both transit and non-transit networks, uRPF-LM

Rt P> URPF check passes? (——No—#» URPF ACL exists?  —No»
|
Yes Yes
Y Y
Interface ingress ¥
No access list exists? <@Yes— ACL permits packet? ——No¥» Drop
1
Yes
Y
: 7 -} Yos — Passes ingress
Continue Forwarding iitaine Adsnes 57 No -

Figure 6: Unicast reverse path forwarding: Input packet filtering.
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provides minimal verification that packets have source
addresses with a valid return route. Implementing
source address verification on edge interfaces of tran-
sit networks is potentially difficult, given multi-hom-
ing and traffic balancing of downstream connectors.
For this reason, it is all the more important that sites
able to deploy strict mode verification do so.

Using uRPF for Address Filtering

As network operators, we occasionally need to
apply filters blocking certain source addresses from
entering a router interface. In our network, there are
two primary reasons for needing to do this. First, we
sometimes want to block certain source addresses
from entering at our border. This occurs when we are
undergoing a network attack or otherwise have an
administrative need to block packets from particular
addresses. Additionally, we periodically need to pre-
vent internal addresses from accessing the network.
These blocks are typically applied to enforce adminis-
trative restrictions. For example, when a host is
infected with a worm, we work quickly to filter the
host, preventing further network abuse.

While either source or destination-based address
filters can be applied using access list style restrictions
on interfaces, changing these filters is time consuming
and error prone. In the midst of network abuse, such
as a high-rate denial of service attack, changing filters
can be especially troublesome. Administrators might
have difficult connecting to the router and, once con-
nected, might face difficulties with low resource avail-
ability. Even in otherwise stable conditions, changing
access filters can be a complicated process.

Destination Address Filters

As we look beyond the use of access filters, we
note that it’s relatively easy to apply destination
address filters; that is, block traffic bound for specific
addresses or subnets. Null routes can be added to a
sinkhole router in a network, and with proper redistri-
bution any traffic destined for the address will be
drawn to the sink hole. Using null routes is typically
easier than filters for destination-based blocking, espe-
cially if a host-based routing daemon is the null route
source. This does mean that traffic is not blocked at
the edge; instead it is dropped at the originating router.
Because routers are optimized to forward traffic, how-
ever, this is typically an acceptable tradeoff.

Some interesting work has been done by operators
seeking an efficient way to identify ingress access
points of denial-of-service traffic. Working even in the
face of spoofed source addresses, the Remote Triggered
Blackhole Filtering [15] (RTBF) mechanism causes
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traffic destined for a specific address or subnet to be
blocked at the network edge. Rather than adding a null
route for the targeted address, instead an iBGP route to
a specially-designated address is added. Each edge
router is then configured with a null route to this special
address. Packets to the blocked addresses are dropped
at the network edge. By logging ICMP Unreachable
message generation, operators can quickly locate the
traffic ingress access point.

Source Address Filtering with uRPF

Unlike destination address filters, blocking pack-
ets from specific source addresses is harder to improve
from traditional access lists. However, using uRPF-
SM, we can enable faster filtering of specific source
addresses. Using a host-based routing daemon,
addresses or subnets to be blocked are configured as
null routes and are redistributed through the routing
domain. The strategies of RTBF to effectuate null
routes at each router could also be used. Note that in
most cases, we are talking about adding host routes to
individual addresses to block.

Adding these null routes serves two purposes:
any traffic destined for the target IP will be redirected
to the announcing router. Additionally, while ACL-fil-
tered source addresses would ordinarily pass the
uRPF check (and then be dropped due to the ACL),
announcing a more specific route (in most cases, a
host route) will cause routers within the domain to
have a more specific forwarding table entry for the
filtered IP range. This specific entry will be in the
direction of the announcing router, not the normal
ingress interface. Thus, using uRPF-SM the traffic
will be dropped. Figure 7 and Figure 8 illustrate the
network changes when an address is black-holed by
the host-based router.

This method is an improvement over the use of
access lists, due to the relative ease with which source
address filters can be effectuated. Host-based routing
daemons provide the capability of easily scripting
changes to the routing configuration. During network
denial-of-service attacks, minimizing the time to apply
filters translates into a faster recovery time. Addition-
ally, this can relieve the burden on network operators to
change router configurations, instead making the pro-
cess of applying filters one that is more easily delegated.

The procedures to enable the use of uRPF for
source address filtering are:
e Configure edge interfaces for uRPF-SM as
described above.
e Set up a host-based router and configure it to be
a part of the IGP routing infrastructure. In our
case, this means enabling OSPF, specifying the

Platform Strict Mode Loose Mode
Cisco 10S ip verify unicast source reachable rx | ip verify unicast source reachable any
Juniper JunOS | unicast-reverse-path active-paths unicast-reverse-path feasible-paths

Table 2: uRPF configuration commands.
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correct area parameters, and entering the proper
authentication keys.

Configure a mechanism for dynamically chang-
ing routes on the host router. We are developing
a system to provide approved administrators
with a mechanism for specifying hosts to filter
or unfilter. Each host is specified by IP address.

When a host is filtered, the following occurs:

A static host route (/32 route) is added to the
routing daemon. This can occur manually or via
an automated mechanism.

The route is redistributed through the IGP. Routers
hearing the announcement will install a host route
in the direction of the announcing router.

Traffic to the filtered host will be delivered to
the host router, where it will be discarded.
Traffic from the filtered host will be blocked by
uRPF-SM on the first hop router. The forwarding
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table lookup will result in the next hop interface
being towards the announcing host router, not
towards the edge network. Thus, the traffic is
dropped.

Deployment Example
Background

At Carnegie Mellon, we began implementing
ingress filtering on some interfaces in 1998. These filters
were applied to edge interfaces and specifically allowed
the subnet(s) present on the interface. We expanded the
filtering to every router edge interface in 2000. However,
changing the filters by hand is an arduous process. As
subnets are resized and moved, administrators must be
vigilant in keeping the filters up to date.

Coincident with growing incidents of viruses,
worms, and backdoors, we saw a rise in the number of
times we needed to apply IP filters against particular

Host Passing uRPF Checks; Full Connectivity
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C 128.2.2.0/24 is directly connected

CodeRed-1
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Figure 7: Host passing uRPF checks.

Host is Filtered; uRPF Fails

Blackhole

rtr2

0 E2

128.2.2.209/32 [110/20] wvia ...

src: 128.2.2.209

CodeRed-1

g e |

Figure 8: Host failing uRPF checks.
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campus source addresses. Additionally, we regularly
need to apply IP filters to enforce administrative
restrictions. During the height of Code Red [16], for
example, up to 40 filters per day were being added as
machines were compromised. These filters were done
as head-of-the-line additions to the filter on the ingress
interface. Changing the filters manually is very time
consuming and error-prone, and several cases of incor-
rect filters in our network were identified.

Needing to add and remove source filters fre-
quently, we wrote a utility to automate the process of
adding and removing the filters on edge interfaces.
The initial version filtered a single host at a time,
requiring administrators to enter passwords when nec-
essary. Subsequent revisions can change multiple fil-
ters in one session to the router. The script intelli-
gently uses the routing table to identify the ingress
interface, identifies the current interface ACL, and
then safely inserts or removes the requested elements.

In summary, the use of ingress filters at Carnegie
Mellon serves two primary purposes: source address
verification, and applying administrative restrictions
through source address filtering. We can easily use
uRPF-SM to implement source address verification
without using interface ACLs. Using the methods
described here for applying source address filters with
uRPF, we nearly eliminate the need for access list fil-
ters in our network. Our IGP is OSPF and, as noted, we
have experience using the Quagga OSPF routing dae-
mon on Linux hosts to join our OSPF routing domain.

After uRPF-SM configuration on edge interfaces
of our routers, we install a machine running the
Quagga host routing daemon. This machine has con-
nections to our network core, to minimize the number
of routers processing traffic null routed on the host.
When addresses need to be filtered, they are added as
null routes to the Quagga configuration. Redistributed
into our OSPF routing domain, backbone routers
quickly install the host route into their forwarding
table. uRPF-SM then blocks incoming traffic from the
address, while traffic to the address is routed to the
Quagga host. Note that the announcement is not prop-
agated out of our IGP; this does not change our BGP
announcements. Additionally, the OSPF announce-
ment is subject to traditional OSPF inter-area flooding
rules. For instance, routers in totally stubby areas will
not hear the host route announcement. This procedure
has come to be known as OSPF-based Remote Trig-
gered Blackhole Filtering (oORTBF).

Summary

Once unicast reverse path forwarding is imple-
mented in a network, it can be effectively leveraged to
quickly apply source address filters. There are several
advantages to applying filters in this manner beyond
the obvious time savings. Operators need not locate
where the address enters the network, saving addi-
tional time in applying filters. Finally, using a host-
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based routing daemon makes it easier to delegate
administrative control of filter operations. Operators
may even consider using more than one host to dupli-
cate the null route announcements, leading to greater
reliability and stability of the address filtering.

Conclusion

Anycast addressing, host-based router daemons,
and unicast reverse path forwarding are three useful
tools in the ever-expanding network operator’s tool-
box. Our experiences show that as applied to the prob-
lems addressed here, they can provide solutions that
improve network reliability and save operators’ time.
The need for source address verification is well under-
stood by most backbone network operators, but the
use of verification in enterprises remains low. Where
possible, operators should investigate enabling uRPF
on all edge network interfaces, as this directly
enhances network security.
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