USENIX Association

Proceedings of the 17" Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26-31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



The Realities of Deploying Desktop Linux
Bevis R. W. King, Prof. Roger Webb, and Dr. Graeme Wilford — University of Surrey

ABSTRACT

The School of Electronics and Physical Sciences has developed and deployed a Linux-based
Desktop solution with thousands of users across many hundreds of machines. We have successfully
delivered this solution across the whole range of staff and students within a large organization. It has
reduced per-desktop support issues to a minimum and given a stable, reliable, up-to-date and flexible
environment to our user community. What’s more, it also provides Windows.

Our second generation variant is now deployed, and a third generation is in development. We’ve
based our work on standard distributions and software tools and achieved a number of key objectives:

e Zero intervention network-based installation

¢ Full Remote Administration including complete unattended re-install

¢ Dataless clients with no need to back them up

¢ Extremely configurable: extensive support for different peripherals, varying software
installations, and diverse hardware

¢ Automatic updating of all software: multiple simultaneous technologies providing a flexible
solution

¢ Centralized authentication and authorization

* Exceptional levels of user choice: Linux, Windows and Hybrid environment

Our environment is based upon RedHat Linux 7.3, Ximian GNOME 1.4 and VMware 3.2
providing Windows NT 4.0. Our first generation environment was based upon RedHat Linux 6.2,
Ximian GNOME 1.2 and VMware 2.0 providing Windows NT 4.0. This paper discusses those
technologies we have have deployed with particular focus on the implications of each choice
made. All of the scripts mentioned will be available as a tarball from our web site to aid others.

History and Overview

The School of Electronics and Physical Sciences
at the University of Surrey is like many other Elec-
tronic Engineering and Computing Science depart-
ments at Universities around the world in that we run
our own computing services distinct from the Univer-
sity’s Central Computing service. We have a long tra-
dition of using primarily Unix machines going back
more then twenty years, although we’ve always sup-
ported remote access to filespace, email and applica-
tions from a range of other platforms. We have a small
but experienced support team consisting of some core
staff funded centrally, and some based within research
centers. We have a user community of around 2,600
users being served by around 800 computers.

Some years ago, it became apparent that the
cost/performance ratio of PC hardware was likely to
reduce the attractiveness of our traditional Unix work-
station environment, while at the same time political
moves within the University were pressing for guaran-
teed interoperability between all computing systems
on campus. The Vice-Chancellor wanted to be able to
email all University Staff, and, if he wished, attach a
Word or Excel document. One particular aspect of this
requirement was that he wanted the IT staff held
responsible for it working at all times. A separate ini-
tiative at the same time was aimed at removing all
pirated software from all machines owned by the

University. This effectively meant that the end user’s
administrative access to the machines would have to
be removed. This meant an end to our previous “look
after it yourself™ attitude to Windows boxes.

This left us with one of two options:

a. Accept that most members of staff would have
two machines; an official “Staff”” workstation
supported by the University’s Central Comput-
ing Service and the technical workstation (*nix)
needed for their actual work.

b. Develop a solution that combined the two roles
in a single machine with centralized administra-
tion.

We decided on the latter course of action and the
Hybrid workstation project was born.

Our initial planning phase included a review of
the technologies available. We considered a range of
operating system options and settled on RedHat Linux
since it was the version all of the system administra-
tors had the most experience of. While some adminis-
trators had experience of other distributions (e.g.,
Debian, Slackware, etc.), RedHat was the common
ground. For desktops we considered GNOME, KDE
and CDE; we settled on GNOME partially for licens-
ing reasons (The license on the Qt Library, an integral
part of KDE, was still perceived as a serious problem
then) and partially because of Sun’s stated intent of
going for GNOME. We hoped for a common desktop



The Realities of Deploying Desktop Linux

environment on both our new Hybrid machines and on
our many SPARC/Solaris workstations.

We have had a long history with using a wide
range of PC emulation/access products under Unix
including Insignia’s SoftPC and NTrigue products,
SunPC (both with and without co-processor cards) and
Windows Terminal server. None of the products we’d
previously used seemed that suitable for deployment,
so we decided to try a (then) promising new technol-
ogy called VMware.

The main objectives were:

® To make the operating system installation as
simple as possible, and include the Windows
environment within it.

® To provide centralized software installation
including package management and updates.

We had previous experience of updating a dual-
boot workstation environment using Linux to re-install
a Windows NT disk image nightly and found it had
made an enormous difference to the supportability of
Windows to have the machine forcibly reset to a
known-good state each night.

Administration and Installation

The key objectives here were to have a simple
and automatic installation system, automatic package
updating, and to have software package configuration
managed centrally. Ideally this should work for oper-
ating system updates, for optional package updates
and for the Windows applications.

Our zero-intervention network-based installation
system is based upon the kickstart system provided by
RedHat, which permits a full RedHat distribution to be
downloaded over the net and automatically installed.
First a server volume is created and the contents of the
main RedHat distribution CDs copied into it. The vol-
ume is then exported via NFS.

You then install a machine over the network giv-
ing the various options you desire; at the end of the
install, the RedHat installer (called anaconda) drops a
file called “anaconda-ks.cfg” into root’s home direc-
tory (/root) on the newly installed machine. This file is
a template for reproducing that set of install selections
on another machine.

This file can easily be modified by hand (some
examples are in the supporting tarball) for fine tuning
and is then placed in /tftpboot on the server and its
filename specified in the DHCP entry for the client
machine. To do the install on a new machine, we boot
from a custom bootnet image written onto a CD-ROM.
The image is nothing special apart from a default boot
option of ks to invoke kickstart mode automatically.
Once the kernel has loaded and the kickstart configu-
ration file retrieved from the server, the CD-ROM can
be removed and the machine left to install unattended.

The operating system component package selec-
tion is handled directly by kickstart, and the lists are

King, Webb, & Wilford

within the downloaded kickstart file. We have added
some additional definitions to allow anaconda to
install the Ximian GNOME packages instead of the
ones supplied by RedHat. We have a number of stan-
dard configurations which reflect the desired partition-
ing on various different capacities of hard disc, but
these can be disparate physical machine types.

Adding additional packages to be installed by the
kickstart system is actually not that hard to do. For a
major subsystem like the Ximian GNOME desktop,
first you need to collect together the necessary RPMs.
This is very easy with Ximian — run the installer on a
testbed machine and at the end of the session all the
RPMs you need will be in /var/cache/redcarpet/pack-
ages. Next you copy the necessary RPMs into the
kickstart areas .../RedHat/RPMS tree and remove the
clashing original RedHat packages. You then edit the
comps file in the kickstart area .../RedHat/base and
rename the GNOME entry in there to something like
Ximian GNOME and list all of the packages you just
installed with the section within braces (less their ver-
sion numbers). At the end of this process, you run the
command genhdlist and the kickstart image is rebuilt
and knows these packages. (Genhdlist can be found in
/usr/lib/anaconda-runtime on RedHat 7.3 — this is part
of the anaconda-runtime RPM which you may need to
install manually).

Subsequent re-installations and upgrades do not
even require physically visiting the machine. For this
we use a small Perl script called “rekick™ which
installs a kickstart kernel (vmlinuz-kick) and associ-
ated initrd (initrd-kick.img) into the /boot in the root
filesystem and then modifies the /boot/grub.conf to
make the default boot option to use them. It then
reboots the machine from this kernel and initrd image
pair, which in turn starts the normal kickstart process
and the machine is completely reinstalled from the
server. Providing you can access the machine via tel-
net, rsh or ssh and become root, the machine can be
remotely re-installed or upgraded.

This has actually proven exceptionally useful in
service; it has been quite surprising how many of the
reports of problems from users have been solved by
simply re-installing the machine, returning it, if you
like, to a known good state.

As is usual with the kickstart process, once the
initial operating system install is completed, a post-
install script is run. We have a very extensive post-
install script mechanism which tailors the machine to
the desired final configuration based upon configura-
tion files placed on a central NFS file server. This
includes configuring for a first boot run of our rsync-
based automatic update distribution system.

One of the key concepts of the system is that
clients are dataless. All the applications and operating
system code are present locally, thus assuring reasonable
system performance, but no user data is. This means



King, Webb, & Wilford

that the fix-quickly-or-wipe strategy can be applied to
the operating system without danger of harming the
user’s work, and so machines with suspected hardware
faults can be swapped out for off-line examination.

One of the neat features of the post install system
is that it runs a script specific to the machine (if present,
or a default script if not) taken from a central repository
on a file server. These files can even be owned by either
group administrators or end-users; this enables configu-
ration control of specific machines without requiring
root access to the systems. This also allows for a wide
range of customization; for example, most machines are
pre-configured to allow the casual attachment of USB
ZIP drives and Scanners. Additional script components
add support for local inkjet printers, DVD-ROM drives,
CD-R and DVD-R writers, internal IDE ZIP drives,
USB memory keyrings and the like.

All the systems are kept automatically up-to-date
(with, from experience, the exception of new kernels).
Two technologies are used for this: the first is RPM
based, and the second is a locally-written system
based on rsync. For RPM packages which mainly con-
sist of operating system and GNOME updates, we use
a perl script called autoupdate-ecm which invokes the
autoupd script by Gerald Teschl (see Appendix A —
this is in the supporting tarball). This has been config-
ured to scan a local RPM repository via NFS and to
update those RPMs that have changed since the last
time it was run. In turn, this repository is updated
nightly from the appropriate update sites of RedHat
and Ximian. We very rapidly learnt that kernels should
not be updated in this way; allowing automatic kernel
updates always seemed to cause problems with
VMware, ALSA and the X server, all very crucial ser-
vices. We also discovered that Ximian’s RPMs did not
always contain correct dependency information, caus-
ing failures if allowed to be updated automatically.
(Recently Ximian have been much better at this). This
meant that, in the end, we reduced the automatic
update system to just pulling RedHat non-kernel
updates, and manually performed updates to the RPM
repository for the Ximian Desktop tree and the kernel
from time to time.

The second technology we use is primarily tar-
geted at application packages. It is often fairly hard
work to build a suitable RPM for every package you
wish to install, and so we tend not to for locally built
software. Since we’ve been a large Unix site for many
years, we have some traditions about filesystem lay-
out; one of these is a hierarchical naming convention
for application directories with a couple of locally
written scripts to glue it all together. It was important
to us to mirror this behavior in the Linux environment,
despite the fact that RedHat does not normally make
use of /opt. We intended to use this mechanism for
updates to /opt and /usr/local only. Over time, how-
ever, we added a few more paths, namely such direc-
tories as /ust/lib/perl5 and /usr/lib/mozilla_1.0.1, since

The Realities of Deploying Desktop Linux

both Perl modules and mozilla plug-ins are hard to
install and manage via RPMs.

Each application is categorized by Vendor, suite,
package, and version. For example, a locally compiled
GCC 3.2 would live in /opt/GNUdevelop/gecc-3.2,
allowing it to co-exist simultaneously with a number
of other versions. Within /opt/GNUdevelop/bin there
would be symlinks established to the “current” main-
stream version: i.e., gcc3 would point to /opt/GNUde-
velop/gec-3.2/gec; these in turn are all linked into
/opt/bin. Each user then has /opt/bin in their path, the
search order depending on whether they want
local+redhat, or redhat+local as their environment.

On Solaris (and SunOS before it), we had used
the track package from MIT’s Project Athena to man-
age distributing updates from a master server to other
servers and desktops. The concept here is that the
master server holds everything that might be needed
(other than extremely specialized items) and each
other machine downloads only what it needs. This is
determined by a subscription list held on the master
server, whose owner can be a user who does not have
root privilege on the master server. Over time, we had
re-implemented the mechanism in Perl with rsync as
the transport medium, while retaining the file format
used by the track package. We called this script
rsyncer and it is invoked by rsync.slave.sh from cron
on a nightly basis on all machines. The rsync.slave.sh
script includes a random delay to stop all the machines
simultaneously accessing the master server in the mid-
dle of the night.

For this project, we added further additional
functionality in the form of an include file mechanism
to allow for configuring a group of machines using
common file subscription lists. We also added a bait-
and-switch mechanism for use with the Windows
applications (more details of this later).

Authentication and authorization for the entire
system is tied into our NIS domain and uses netgroups
to control access to each machine. The appropriate
/etc/passwd entries to enable access by specific user
communities on a given machine is put in place by the
post install script. A locally-hacked PAM authentica-
tion module adds the user as they login into a locally
run Samba server’s smbpasswd file, ensuring that the
Windows domain authentication matches the Linux
domain (there’ll be more information on the local
samba server in the next section).

Providing Windows

Thus far we’ve focused the tools of installation
and management of a large cluster of Linux machines.
However, most of the user community wants (or at least
needs) access to Windows applications, and some don’t
even want to know that anything else exists. If we
didn’t satisfy this need, the whole project would fail
since we would not be providing the single multi-pur-
pose desktop required. With a very broad community to



The Realities of Deploying Desktop Linux

serve, from programmers writing Unix software in
Emacs to Secretaries writing documents in Word, this is
a challenging goal to achieve.

We’ve had long experience of using various PC
integration products under Unix, starting with SoftPC
on a Sun SPARCstation SLC back in 1991, migrating
through various generations of emulators including
SoftPC, SunPC, and WABI; and using Windows NT-
based server solutions such as NTrigue, Citrix
MetaFrame and Windows Terminal Server. We fairly
rapidly concluded that the NT-based server solutions
would not really be viable for this application because
of the sheer number of desktops needing to be accom-
modated and the proportion of the usage of Windows
applications we could expect with these systems. Also,
the usage of local removable media with the server
solution always proved significantly less than ideal.

Since the platform was effectively trying to
address both political and technical objectives, we
needed to provide as few reasons as possible for peo-
ple to object to the system. It needed to be as broad in
application as possible. With our previous experience
of emulators, this was very hard indeed because cer-
tain pieces of the emulated environment seemed not to
always interact with applications 100% in the way
Windows would. For this reason, we concentrated on
solutions which could run a vanilla distribution of
Windows ideally without any more patches or drivers
being required. Of the tools we looked at, VMware
seemed the closest to this goal, presenting a virtual
graphics card, ethernet card and IDE hard drive con-
troller which default drivers within the Windows dis-
tribution could attach to.

For these reasons we selected VMware as our
bridge to the Windows world. It’s important to realize
here that our objectives were not primarily cost sav-
ing; we were trying to provide a more capable system
with lower support staff involvement, not to reduce the
licensing costs for Microsoft software. This may well
be different from other people’s objectives in choosing
to deploy a Linux desktop. Our previous experience
with the dual-boot systems was that the number of
user problems reported reduced markedly if the Win-
dows operating system was re-installed from scratch
on a nightly basis and locked down such that the
user’s ability to install “neat stuff” had been curtailed.
This fitted in well with our dataless client policy.

We also needed to support Windows on a wide
range of disparate types of PC hardware if we were to
gain significant advantage from standardization and
automation. This is where the VMware emulated
devices mechanism was a revelation: we could run the
same Windows image on everything from a low end
Celeron processor, right up to the latest and greatest P4
processor, and even on notebook hardware, without any
changes to the device drivers needed on the image. This
moved all responsibility for handling the actual physical
hardware of the machine into the Linux domain.

King, Webb, & Wilford

The VMware Windows installation consists of
two components; a single large disc image file which
contains a very basic “C:” drive for the system, and
an E: drive onto which all the applications are
installed. The C: drive file is presented to Windows as
the primary master IDE drive on an IDE controller,
and is formatted by Windows itself during the installa-
tion process. This means that the filesystem on this
virtual disc is entirely windows and doesn’t suffer
from some of the name mangling problems encoun-
tered when translating a Unix filesystem into a repre-
sentation of a Windows filesystem. It can hide files if
it wishes to, make them read-only, and so on.

The other Windows drive, E:, is actually mounted
on each machine from a local samba server, and is
actually /opt/VMware/apps in the Linux filesystem.
This means that our configurable rsync wrapper can
determine which Windows world applications are
available on each machine as well as which Linux
world applications, and again all applications can be
updated nightly from the master rsync server. Updating
applications within the Windows environment becomes
trivial since once installed on the librarian machine, it
becomes available on every other machine overnight.

This does mean that all necessary support files
(DLLs in particular) and registry entries for every
application to be used on any machine are effectively
present in the C: drive on all machines. This has not
turned out to be as hard as we feared (or we’ve just
been lucky) since we have always been able to get a
version of each required DLL that works with all
applications. Since the C: drive image file contains the
core OS, this includes all the registry entries and nec-
essary DLLs which in turn are automatically updated.
The downside of this is that all the Windows images
contain the same identity and so effectively have to
operate as free-standing machines. Their only access
to the outside network is via a virtual interface pro-
vided by Linux using NAT (Network Address Transla-
tion) technology. This is sufficient to provide full
access to the internet and to other fileservers on the
local network and has not proven to be a problem in
operation. It also fulfilled a major design goal in that it
makes the Windows environment significantly less
susceptible to remote attacks via the network.

In addition to the E: drive, we used the local
samba server to provide the users home directory on
the Unix servers as H:, and the entire filesystem of the
local Linux box as L: drive (allowing access to Unix-
domain shared volumes, /tmp, and extra devices like
ZIP drives and memory sticks).

The next issue was to provide the lock-down to
avoid tampering. Placing all the applications in the E:
drive meant that Linux could be relied on to ensure
users could not alter those files. Whenever possible,
applications were configured to default to writing user
files into home directories on H:, so only the C: drive



King, Webb, & Wilford

was left to secure. VMware conventionally offers three
modes of operation; on-the-fly updates to the C: drive
disc image file; the creation of a transaction log with
commit or cancel options at the end of the session
(termed undoable) and completely non-persistent. We
wrote a wrapper script called “vm” which forced the
VMware application into the non-persistent mode; here
it keeps a log file in /tmp that does not ever get com-
mitted. Our vm script in addition creates a tree of sym-
links in /tmp to provide the other expected files, (such
as the C: disc image file, NVRAM settings, etc.), in a
location where lock files and the like can be created by
VMware as it pleases, without requiring that the user
have write access to /opt. This allows us to set the
entire C: disc image file tree to read-only within Linux.
Since the log file grows with every action taken within
Windows, we found that /tmp needed to be really quite
big on personal machines (3 GB!) but could be smaller
on student use machines where the lifetime of each
user’s session would be significantly shorter.

In addition to serving the various disk partitions,
the local Samba server is configured to provide authen-
tication to the Windows Login prompt, to provide
access to printers via LPRng, and to handle NT roam-
ing profiles for the user’s own settings and document
histories. We used a modified Samba server version
provided by VMware Inc, which utilizes alternative
shared memory locations to allow for the simultaneous
operation of a regular Samba server and the one host-
ing the services for the local VMware application. In
future we may need to rethink this as the current
VMware supplied version of Samba (2.0.7) does not
support the Domain Controller features we need to sup-
port a newer version of Windows such as Windows XP.

Our work to date has been based upon Windows
NT 4.0, although pretty much any other version could
have been used. We’re considering updating it to Win-
dows XP, but have recently had issues with VMware
changing their pricing policies significantly to our
detriment. We’re currently reviewing other alternatives
before investing significant extra time in development
of a new VMware image containing Windows XP.

Since we are using a single C: drive image for all
machines, it does mean that all application file associa-
tions and all possible start menu entries show up on
every machine. To try and reduce confusion, we’ve cre-
ated a small Windows application called ‘“NoLicense”
which pops up a dialog box informing the user that this
application is not licensed for use on this machine. This
message also gives them some guidance about what to
do about this and who to speak to for advice. We’ve
made use of a feature of rsync to install NoLi-
cense.EXE in place of each application that is not pre-
sent on the machine. Hence, if a machine does not have
a license to run Excel, the EXCEL.EXE binary on that
machine is actually our NoLicense.EXE application.

As soon as someone licenses an application for a
given machine, all we need do is change that machine’s

The Realities of Deploying Desktop Linux

configuration file, and run rsync.slave.sh. The neces-
sary support files are installed into /opt/VMware/apps,
and the binary is switched from being NoLicense.EXE
to the real executable for the application. So long as it’s
already an application we have support for within the
image, we can install it onto a machine in a matter of
20 seconds support staff time and about five minutes or
so actual time. The user does not even need to reboot
the session or machine; it can all be done remotely.

To install a new Windows application, we use a
development machine. This is typically a server, and
VMware is run remotely via X Windows to a system
administrator’s desktop. For this activity VMware is
run as root, and directly rather than through our wrap-
per script. The setup program for the application is
run, and assuming the installation goes smoothly, the
transaction log is committed into the C: drive image
file at the end of the session. This revised C: image
file is then manually transfered to several sysadmin
and power user desktops, along with the new directo-
riecs as needed in the E: drive area (aka
/opt/'VMware/apps), where it is used for a couple of
days to ensure smooth operation of both new and
existing software. Once the new disc image has passed
this QA process, it is copied from the development
server onto the production rsync librarian server and is
copied to all other machines overnight.

Finally, we want to mention one final feature of
the system. A number of our users have expressed
something approaching extreme panic at the thought of
having to even see anything that is not Windows. Since
VMware has a full screen mode in which the Windows
environment takes over the whole screen, we sought to
make that option available for them. We did this in
conjunction with another feature allowing Windows to
be suspended within VMware much as it is on a note-
book PC. We suspended the session at the point where
Windows was prompting for a login, and kept the sus-
pended file. We then made a session script which
uncompressed the suspended session and restarted it in
full screen mode. Thus the user can approach the
GNOME login screen, choose a session type of “Win-
dows NT” and then log in to GNOME; once authenti-
cated by Linux, the suspended session is resumed with
VMware set to full-screen mode. The user then sees a
Windows NT login screen with no other decorations or
distractions; just VMware talking straight to the X
server. When he logs out, the session terminates and
returns to the GNOME login screen. The user need
never know that he has actually been talking to Linux
and the X server all along; rather, his experience
appears to have been a vanilla Windows NT session.
This seems to be an immense comfort to some users.

Problems and Pitfalls

We’ve now described the system we’ve devel-
oped in some detail. What remains is to discuss the
lessons learnt.



The Realities of Deploying Desktop Linux

In general, we are comfortable saying that our
solution works.

There have been a lot of positives. Installing new
machines is easy and quick. The software environment
stays up to date and consistent on a large number of
machines with minimum intervention. The users get
new applications, updates and bug fixes at regular
intervals. The stability of the system has proven to be
generally good, with Windows NT in particularly
being very stable indeed within the emulated environ-
ment. Until an unfortunate incident with a bad service
pack from Microsoft, we’d not seen a single blue
screen of death from NT across hundreds of machines
in the space of nearly a year. Generally, user reaction
has been positive, and many people seem happy with
the system.

However, it would be wrong to say everything
has gone right. Our University’s preferred supplier of
PC hardware seems to have a tendency to change their
motherboards on an almost weekly basis, and we are
constantly finding that new machines are delivered
with bleeding-edge components whose drivers have
yet to find their way into the standard Linux kernel.
This has been a massive headache for us, involving
regular rebuilds of Linux kernels with new drivers
added in to support these new pieces of hardware.

We’ve also found that a very high level of QA is
needed after each change to the master copy of the
Windows NT C: drive image. For example, we’ve
found if you add too many new printers in a single NT
session, there starts to be a noticeable delay before the
Properties dialog box appears. This seems to be a gen-
uine NT problem, but it is easy for such a simple
change to cause a problem that propagates to hundreds
of machines in very short order. We had one Windows
NT service pack that caused a spate of system crashes
(blue screens of death) for no adequately explained
reason; we were forced to back out that service pack
in the end. All of these effects have caused us to be
very cautious about updating the master image, lead-
ing to quite a long lead time on getting new software
installed.

We’ve also had a spate of problems with remov-
able media: the floppy drive doesn’t always initialize
properly under VMware, and you can’t edit a Word
document in place on a ZIP disc because of filename
mangling issues. We’ve also had issues with people
really not understanding the concept of mounting and
unmounting removable media, and the refusal to hand
back a ZIP disc when a application still has it open
confuses people too.

The problems are not entirely in the Windows
world either. GNOME reacts very badly to machines
getting switched off while in operation. We frequently
have to clean up Geonfd’s files to allow people to get
back into applications like Galeon, Evolution and
Nautilus. Nautilus in particular seems to “go away”

King, Webb, & Wilford

and it usually needs system administrator intervention
to bring it back.

We have also discovered that the system needs a
large amount of RAM, for our original RedHat 6.2
based system 256 MB was pretty much the minimum;
for the current RedHat 7.3 based system 384 MB is a
sensible minimum. It’s not really a surprise but it is a
constraint considering that two complete operating
systems are being run on the same machine simultane-
ously. It probably is best not run on anything less than
a 700 MHz Celeron processor.

One downside of the ability of the system to let
us support a large number of desktops has been prob-
lems slipping through the net. In some cases we’ve
found that people have stopped using the machines
and brought in a notebook PC from home instead
because they couldn’t fix a problem with it themselves
and have become frustrated. In most cases, we would
have not considered the machine to be acceptable in
the state we found it — be it through a hardware fault,
lack of memory, or having a faulty interim solution to
a driver problem that had never been given the final
version. When faced with a machine that isn’t ““stan-
dard,” most people have little concept of how it
SHOULD behave and often assume that a fault “is
just the way it behaves.” This holds the potential for
quite a few PR disasters.

Future Directions

At present we’re deploying boxes with RedHat
7.3. We’ve been taking a look at RedHat 9, but we’re
yet to see what we’d consider acceptable stability
from GNOME 2. Most notable in our standardized,
dataless world view is the almost complete inability of
GNOME 2 to survive when a second session tries to
start using the same dot files as a currently running
one. Our users do this all the time when they go to
labs while still logged in at their desks, and it’s a real
problem. Hopefully by the time RedHat 9.1 comes
along, we may be able to consider it as a base for the
third generation Hybrid workstation.

We now have a problem with VMware’s licens-
ing policies, and as a result of this we’re reviewing our
usage of their technology. We are currently evaluating
(again) a range of competitive products. While we still
like VMware technically, we are reviewing whether all
machines need the level of Windows application com-
patibility it provides or whether some users can be
accommodated with a lower-cost solution; Win4Lin,
Wine and CrossOver office are due to be considered.

Conclusions

In summary, we have many hundreds of worksta-
tions deployed with a wide user community, including
our undergraduate computing labs, all based on a
Linux environment. Through the use of virtual
machine software these provide a complete Linux and
Windows environment to the end users. From an



King, Webb, & Wilford

administrative point of view, the centralized configu-
ration, remote administration, automatic updates and
zero-intervention installs reduce our per-desktop sup-
port issues to an absolute minimum. Linux-based
desktops can really be deployed organization-wide,
work well and even help to keep that other windowing
environment manageable too.

Author Information

Bevis King is the Senior Software Support Offi-
cer of the Surrey Ion Beam Centre, part of the
Advanced Technology Institute within the School of
Electronics and Physical Sciences at the University of
Surrey. He splits his time between developing soft-
ware for the Surrey Ion Beam Centre, and being a
Unix/Linux system administrator. Earlier, he was the
system programmer for Unix systems within the core
staff of the School Computing Service, also at Surrey.
He has been at the University of Surrey since 1990,
and was previously a Unix system programmer at the
Department of Computing at Imperial College. Prior
to that he was the Data Processing Manager at a small
research company in the City of London. Since dis-
covering Unix in 1985, he’s been a devout believer
and Unix/Linux proponent ever since. He has served
on the committees of a number of user groups over the
years including the UK Unify (RDBMS) User Group,
the Gould User Society, and The European X Win-
dows User Group. He’s worked on many aspects of
system administration but in particular has dealt with
automated updating, email systems, Oracle DBA
activities and Unix desktop software (CDE and
GNOME). His personal home page can be found at:
http://www.ee.surrey.ac.uk/Personal/B.King/ .

Roger Webb joined the Department of Electronic
Engineering at the University of Surrey in 1983 as a
Research Fellow with the Surrey Ion Beam Centre. He
was employed to look after the computing facilities
associated with the research group — a single pdpll.
Before this he had spent three years as a post doc at
the Naval Postgraduate School in Monterey Califor-
nia, making Molecular Dynamics Studies and Com-
puter Animations, which is still the main area of his
research activities. He did his Ph.D. work in the Elec-
tronic & Electrical Engineering Department of the
University of Salford, on the Mathematical Modelling
of Atomic Collisions in Solids.

Current research activities include the use of
Molecular Dynamics Simulations to predict the behav-
ior of cluster impacts on surfaces and the use and
development of more simple simulations to predict the
effects of energetic particle solid interactions. He
became a lecturer in the Department in 1986 and after,
foolishly, complimenting the Departmental Computer
Resource on its help in installing the research groups’
Sun network was asked to take over as the Director of
the resource after acting as Deputy Director for a year!
The moral of this story is never say anything nice
about anything — something he now tries to stick

The Realities of Deploying Desktop Linux

rigidly to! He was promoted to senior lecturer in 1993,
to Reader in 1997, reaching the dizzy heights of Pro-
fessor of Ton Beam Physics in 2002. He is currently
Deputy Director of the Ion Beam Centre at Surrey
having passed on the mantle of director of the comput-
ing facilities in 1998. More details available at
http://www.ee.surrey.ac.uk/Personal/R.Webb/ .

Graeme Wilford (Wilf) joined the University of
Surrey in 1992 and obtained a Ph.D. in computational
Physics in 1996. He has been involved in systems
administration at Surrey for 10 years and has been
heading up the Computer Support team for the depart-
ments of EE, Maths, Computing and Physics since
2000. A Linux and open-source enthusiast, he
designed and lead the development of man_db for sev-
eral years. These days, he likes to deploy Linux where
other managers would buy an expensive black box.
Wilf can be reached at G.Wilford@surrey.ac.uk .

References

SCS Hybrid Workstation Project — scripts and config-
uration files. Free downloads available. http://
www.ee.surrey.ac.uk/SCS/Hybrid/ .

RedHat Linux — A leading GNU/Linux distribution.
Product discussed is RedHat Linux, Standard Edi-
tion — versions 6.2 thru 9. Free download avail-
able. RedHat Inc, 1801 Varsity Drive, Raleigh,
NC 27606, USA; +1 (919) 754 3700; custom-
erservice@redhat.com; http://www.redhat.com/ .

Ximian GNOME Desktop — An advanced version of
the GNOME desktop environment. Products dis-
cussed are Ximian GNOME 1.4, Ximian Evolu-
tion 0.10 thru 1.2.4, and Ximian Desktop 2
(GNOME 2.2). Free download available. Ximian
Inc, 401 Park Drive, 3 West, Boston, MA 02215,
USA; +1 (617) 375 3800; sales@ximian.com;
http://www.ximian.com/ .

VMware — Virtual Machine software, product dis-
cussed is VMware Workstation, Linux-hosted
version — versions 2.0 thru 3.2. Commercial
Product, trial downloads available. VMware Inc.,
3145 Porter Drive, Palo Alto, CA 94304, USA,;
+1 (650) 475 5000; sales@vmware.com; http://
www.vmware.comn .

Windows NT, Excel, Word — Software — Microsoft
Inc. — http://www.microsoft.com/ .

Samba/Rsync — Samba: SMB (MS Windows compati-
ble) File Sharing software, Rsync: optimized net-
work file transfer software. Version discussed is
2.0.x. Free download available. http://www.
samba.org/ .

Autoupdate — Automatic updating of RPM packages
from update repository. Written by Gerald Teschl.
Free download available. http://www.mat.univie.
ac.at/"gerald/ftp/autoupdate/index.html .

Perl — Flexible scripting language written by Larry Wall
and others. Free download available. http://www.
perl.org; http://www.perl.com .



