
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Generating Configuration
Files: The Directors Cut

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

The generation of system configuration files and other documents directly from a database
has proven to be a very powerful technique. However, there were some limitations to this
approach. With the introduction of Oracle 8i, and more specifically, the addition of support for
XML, we have been able to eliminate many of these limitations and take the file generation and
maintenance to a new level.

Introduction

At LISA 2000, I presented a paper [6] on gener-
ating system configuration files and other documents
directly from data stored in a relational database. This
approach had many strengths, such as allowing ver-
sion control of documents and files, selective regener-
ation based on need (only regenerate files that have
changed), centralizing the file generation logic. The
mechanics of writing actual files was handled by a
simple, generic file generation program and all of the
hard work was done in the database. This model has
worked well for us, and has proven to be quite flexible
and convenient for the deployment of new files.

With all the strengths of this approach, we also
hit some limitations. We found that the extraction of
the data from the database required one particular skill
set, while formatting that data for presentation or
eventual end use required a different, often unrelated,
skill set. Simply put, the extraction of the data
required database manipulation skills, i.e., the ability
to program in PL/SQL.1 Formatting that extracted data
required different skills and knowledge. This latter set
of skills and knowledge could be, e.g.,

• The format and structure of OS configuration
(e.g., /etc/passwd and /etc/group);

• typesetting skills (e.g., LaTeX, HTML); or
• how ‘‘corporate branding’’ (e.g., logos, tem-

plates) might affect web pages.

A second issue came up with the generation of
web pages. As the visibility of web documents was
growing, so was the interest by the ‘‘Marketing and
Media Relations’’ folks in the actual appearance of the
web pages, down to the use of graphics and buttons
and the look and feel of the web pages. To make mat-
ters worse, this look and feel was constantly changing
and evolving, and it was a chore to keep the generated
web pages looking like the rest of the site’s pages.
Some of this could be handled via cascading style
sheets, and some other tools to allow the graphics

1PL/SQL is a procedural extension to Oracle that allows
you to write programs that are stored and executed in the Or-
acle database itself [11].

designers to specify sections of ‘‘boiler plate’’ within
documents, but the basic structure and layout was still
dictated by the PL/SQL code. Any change in what
data elements were displayed, or even the order of
columns in a table still required intervention by the
programmers and that pleased neither the program-
mers nor the web folks.

Clearly, we needed a way to separate the extrac-
tion of the data and it’s reformatting. This would let
the database programmers concentrate on extracting
the data without getting bogged down with the final
format issues. Folks who were concerned with format,
such as web designers, marketing managers, etc.,
could concentrate on the formatting process. With the
release of Oracle 8i, support was added for the pro-
cessing and transformation of eXtensible Markup Lan-
guage (XML) [2] documents. This provided a method
of extracting the data from the database in a display
neutral format, and then allowing the web designers to
apply whatever transforms and formatting that was
required. This meant that once the file extraction rou-
tine was written, the PL/SQL programmers were done
and the web designers could take over and make for-
matting changes as their needs and schedules dictated.
In addition, since the database could invoke the trans-
lations internally, we were able to keep all of the ver-
sion control and process monitoring [8] features that
we found useful in the first version, and use the same
generic program to actually write the files.

XML – A Brief Primer

The ‘‘parent’’ of XML is Standard Generalized
Markup Language (SGML). Another offspring of
SGML is HTML, which many of us are already famil-
iar with. One of the problems with HTML, is that it is
not extensible, or perhaps worse, it does get extended
by some browsers and servers and not by others. I am
certain that many of us have visited web pages that
don’t work quite right on our browser of choice. XML
was designed to be extensible, yet contained so that
applications developed to process an XML document,
can deal with any XML document. A good discussion
of this is available in Chapter 6 of The LaTeX Web

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 195

Generating Configuration Files: The Directors Cut Finke

Companion [9], including why XML will not run into
this problem, unlike HTML.

But XML is not limited to document preparation.
Another area where XML is used is in business to busi-
ness applications to allow businesses to exchange infor-
mation in a consistent manner. Inherent in an XML docu-
ment, is the Document Type Definition (DTD). The DTD
(or schema) provides a set of rules that not only defines
the element names and types, but also the relationship
between data elements in the XML document. This pro-
vides a way to validate an XML document to ensure that
it is correct. This schema is in fact another XML docu-
ment. By sharing these XML schemas, different parties
can independently develop XML documents and inter-
faces that will inter-operate.

<etc_passwd>
<pw_entry platform="BASE">

<username>finkej</username><unixuid>58220</unixuid><gid>4000</gid>
<gecos>Jon Finke</gecos><homedir>/home/20/finkej</homedir>
<shell>usr/bin/session</shell>
<person_id>91325789</person_id><user_type>PRIMARY-EMP</user_type>
<platform>BASE</platform>

</pw_entry>
<pw_entry platform="BASE">

<username>hudsod</username><unixuid>58221</unixuid><gid>4000</gid>
<gecos>Dave Hudson</gecos><homedir>/home/21/hudsod</homedir>
<shell>usr/bin/session</shell>
<person_id>91325792</person_id><user_type>PRIMARY-EMP</user_type>
<platform>BASE</platform>

</pw_entry>
. . .

</etc_passwd>

Figure 2: XML version of /etc/passwd .

Using XML to Encode OS Configuration Files

But XML has more uses than just document
preparation or exchanging information between busi-
ness. We have the need to generate /etc/passwd files or
the equivalent from our database and make it available
to different kinds of systems. Although we could gen-
erate the traditional ‘‘:’’ delimited form of the file and
then use tools and scripts to reformat that if needed
(like for our LDAP servers), we face a problem if we
need to include more information about an entry. We
can add more fields, but we then risk breaking those
tools and scripts. We can instead encode our password
entry information in XML.

The XML version of our password file consists
of two parts. The first, seen in Figure 1 is the DTD
which defines how the rest of the file will be format-
ted. This can be very useful to people who want to
process this data and allows us to mechanically verify
the format of the data. The second part, seen in Figure
2 contains the actual password data enclosed by
<etc_passwd> tags. Each record (or line in the
/etc/passwd file), is in turn enclosed with the
<pw_entry> tags. Within each record are a number of
elements. The first six should look pretty familiar, but
there are some additional fields that may be useful to

other applications. We will see some examples of how
these are used later on.

XML and Translation

One of the facilities provided with many imple-
mentations of XML, is the ability to use an eXtensible
Stylesheet Language (XSL) [1] template (or style
sheet) to transform an XML document into some other
format such as HTML, LaTeX or whatever is needed.
The important point being that this enable us to sepa-
rate the extraction of the data from the database, from
the details of the final output format, and in fact, the
same XML data can be translated by several different
templates to generate different types of documents.

<?xml version = ’1.0’?>
<!DOCTYPE etc_passwd [
<!ELEMENT etc_passwd (pw_entry)*>
<!ELEMENT pw_entry (username?, unixuid?,

gid?, gecos?, homedir?, shell?,
person_id?, user_type?, platform?)>

<!ATTLIST pw_entry platform
CDATA #REQUIRED>

<!ELEMENT username (#PCDATA)>
<!ELEMENT unixuid (#PCDATA)>
<!ELEMENT gid (#PCDATA)>
<!ELEMENT gecos (#PCDATA)>
<!ELEMENT homedir (#PCDATA)>
<!ELEMENT shell (#PCDATA)>
<!ELEMENT person_id (#PCDATA)>
<!ELEMENT user_type (#PCDATA)>
<!ELEMENT platform (#PCDATA)>
]>

Figure 1: XML DTD for /etc/passwd .

In Figure 3, we have an XSL transform that will take
an XML version of our password database, and create a
conventional /etc/passwd file. Along with simply reformat-
ting the data into the desired format, it also does a selection
to obtain all of our base entries (our normal users), along
with the special entries we want on our AIX hosts. It does
this by comparing the platform attribute for the desired tar-
gets. A trivial modification to this selection, and we can
generate the passwd file for other platforms as needed.

196 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Finke Generating Configuration Files: The Directors Cut

Generate File

File_Gen (PL/SQL)

Oracle Database

Gen_RR_File Gen_DHCP_Config Gen_LDIF

Figure 4: Original file model.

XSL Template

Source Table

Generate File

XML Generator

XSL Translator

XML Document

Doc CacheOracle TablePL/SQL Package Doc CacheOracle TablePL/SQL Package

HTML Document Generate File

Figure 5: New file model.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" indent="no" media-type="text/plain" standalone="yes" />
<xsl:template match="/">
<xsl:for-each select="/etc_passwd/pw_entry[platform=’BASE’ or platform=’AIX’]">

<xsl:sort select="unixuid" order="ascending" case-order="lower-first"/>
<xsl:value-of select="username"/>:*:<xsl:value-of select="unixuid"/>:

<xsl:value-of select="gid"/>:<xsl:value-of select="gecos"/>:
<xsl:value-of select="homedir"/>:
<xsl:value-of select="shell"/><xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Figure 3: XSL transform for /etc/passwd .

Original Model
In the original model, seen in Figure 4, we would

write a file specific PL/SQL package that ‘‘knew
how’’ to generate the final file format. This package
would be called by the File_Gen PL/SQL package that
worked closely with the Generate_File program to
extract the formatted information from the file specific
package, and write it to the hosts file system (The Gen-
erate_File program can also read in files, read and write
pipes, stdin, stdout and stderr). Together, these would
handle most of the details of access control, error
checking, version control and other details, allowing
the file specific packages to concentrate on extracting
the appropriate data and formatting it.

New File Model

As with the original model, we still write the
appropriate PL/SQL code (the XML Generator in Fig-
ure 5) to generate a file from the desired data in the
source table(s), only this time, instead of HTML or

LaTeX, we generate it as an XML format document.
We can, if desired, write this XML file out to an exter-
nal file system, using the same Generate_File program
as we used for the original model. All of the version
control and selective generation features of the origi-
nal approach are still available for use. The resulting
XML files can then be used by the web developers to
produce the desired outputs files, and made available
for other services that need the data.

We don’t need to stop with just the XML file. We
can transform that XML document, inside of Oracle,
with the appropriate XSL template into our desired
HTML or LaTeX (or whatever) document and write
out that file using the Generate_File program, just as
we did before. This allows us to take full advantage of
the version numbering of the original data, as well as
the version number of the XSL template. One nice
thing about this, is if the web developers provide a
new style sheet via the XSL template, that forces the
regeneration of all of the documents that used that
style sheet. Note – this only requires that the original
XML data documents be re-transformed, we do not
need to repeat the original database queries used to
generate them.

Version Control

In the original implementation, file version con-
trol was a one step process. We simply recalculated
the version number based on the data in the database,
and compared that to the version number in the file. If
there was a difference, we regenerated the file with the
new version number. With the addition of the XML
support, we have at least two, and possibly three steps.
As with the old model, we recalculate the version
number based on the data, and then compare it with
version number of the XML data stored in the docu-
ment cache. At this point we now have an XML docu-
ment, still stored in the database with a new version
number. We can, if desired, write out this XML docu-
ment to the external file system using the Generate_File
program.

But although the XML file is nice, that is often
not our desired objective. Instead of writing the XML
document to a file, we can transform the XML docu-
ment, via an XSL transform into a new document,

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 197

Generating Configuration Files: The Directors Cut Finke

possibly HTML or other format. This document is also
still stored only in the database. It is however, a trivial
matter to write this final form of the document to an
external file. As an added twist, the version number of
this transformed document is simply the greater of the
version number of the base XML document and the
version number of the XSL transform, which is yet
another XML document stored in the database. In this
way, when the XSL transform document is updated,
all of the final documents that depend on that trans-
form are now ‘‘out of date’’ and will be regenerated at
the next available opportunity.

Figure 6: Schema model.

XML Document Cache

It quickly became obvious that we needed a way
to store and reference XML documents easily within
the database. Even if we were not concerned with the
cost of regenerating the base XML documents every
time we wanted to transform it, it is often desirable to
be able to maintain a consistent data image. By gener-
ating and storing an XML document in the database,
we are able to apply different transforms and know we
are working on the same dataset.2

We had some specific applications in mind, and
these helped drive our implementation. One of them
was the our web directory of registered home pages.
We actually have two different ones, the student home
page directory and the Faculty/Staff home page direc-
tory. Aside from the title and the actual entries, these

2Storing an XML document in Oracle is trivial. Oracle has
a data type CLOB that can handle a document up to 2 GB in
size (assuming you have the disk space available to handle it
in the database). The XML stored packages provided by Or-
acle [10] allow manipulation of XML documents as CLOBs.

both use the same format. This was a case where we
had the same schema but two different instances of
that document. A second case was our departmental
staff listing. For each department, we have a web page
with all the people in that department. All use the
same schema, but we have many different versions
(one per department). In this case, we are looking at
one instance (department staff list) of one schema
(directory entry), but with many sub-documents, one
for each department.

Another concern was maintaining access control
on schemas, instances and documents. It is important
to us to allow the web developers to update the tem-
plates used to generate the departmental directory web
pages, yet not be able to change the templates used to
generate the LaTeX used to produce the printed
departmental directory. That access has to be granted
to the text processing folks who manage the LaTeX
world. Yet, both groups of people need to be able to
read the same base documents. It is likely that our
access control systems will become more fine grained
over time.
Organizing Documents

The key element of any XML document is the
schema. This defines what can be included in the doc-
ument and how it is represented. Even if we don’t
actually validate the document, or even have the
schema formally documented, it exists as a concept,
and gives us a good starting point for organizing docu-
ments. In Figure 6 we have a schema, which would
have basic information such as the name, a descrip-
tion, who created it and when, and so on. There still
isn’t any data at this level. In most cases, we will have
a DTD document associated with this schema. This

198 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Finke Generating Configuration Files: The Directors Cut

provides a guideline for both developers who want to
generate XML documents as well as people who want
to write XSL or other types of transforms.

Document_Id Number A unique identifier for this document
Schema_Id Number The identifier (primary key) of the schema that defines this document.
Instance_Id Number The identifier (primary key) of the schema instance that this document

is part of. For a DTD document, this is the same as the Schema_Id.
Base_Doc_Id Number For a generated (XSL Transformed) document, this is the Document_Id

of the base XML data.
Template_Id Number For a generated document, this is the document_Id of the XSL

transform.
Doc_Code varchar2(16) For schema instances that have sub documents, this is the key that

distinguishes the different documents from each other.
Doc_Type varchar2(16) This identifies the format of the document, such as ‘‘XML’’, ‘‘XSL’’,

‘‘DTD’’ and so on. This can be useful when displaying a document.
Doc_Title varchar2(64) This is a simple identifier for the document – useful for listing available

documents without having to open each document up to determine
what it is.

Description varchar2(2000) A place for a more in-depth description of a document than is allowed
by the title field.

Entry_Method varchar2(8) A flag that indicates how this document was obtained, such as from an
external URL, generated via direct query or other methods.

Ref_URL varchar2(255) The URL used to obtain this document if it was loaded via URL. Other
entry_Methods may store source information such as the procedure or
package name that generated the document.

Doc_Size Number The size of the document, in bytes.
When_Inserted Number The version number of this document, obtained for a system wide

sequence number space.
Content CLOB The actual document, up to 2 GB in length.

Table 1: Document cache table.

Now that we have a schema, the next step is to
define an instance of this schema. This will be an
actual set of data, such as the password file or the
departmental directory. This data will presumably
need to be regenerated on a periodic basis. Since this
is production data, we need to impose access controls
on this instance of the schema; who can update it, and
who can reference it. This instance may actually result
in multiple sets of data – for instance, our employee
directory is a set of documents, one per department. In
this diagram, we have two instances, the first with just
a single document and the second with multiple docu-
ments.

Since most people don’t actually want to read
XML files, the next step is to define an XSL template
that will transform each of the XML data documents
into the desired format, resulting in a second set of
documents that can be written out as files or displayed
via the web. We can provide additional translations to
produce other formats. In the example of our staff
directory, some departments want to have their own
directory page on their web site. This allows them to
use the official, most accurate, directory information
and still maintain their desired look and feel. In Figure
6 we have two XSL templates (A and B), and we can
apply those to each of the XML documents resulting
in two output documents per input document.

These multiple transforms also allow us to
include more data elements in the base XML docu-
ments that we might not want to include in the most
broadly published documents. In the case of our
employee directory, we include home address and
telephone numbers, as well as cell phone and pager
numbers. We do not want to put this into our regular
online directory available to anyone via the Web, but
we do want to include this in internal use department
directories. By being able to control what elements are
included as part of the XSL transform, all of our direc-
tory listings are able to have the most accurate and
timely information.

Accessing Documents

When a document is stored in the document
cache,3 (see Table 1), we store a bunch of additional
information about the document. This allows us to
determine where a document originated, who put it
there, and when. We also assign a unique document_id
value that can be used to reference this document else-
where in the system.

Extracting Documents

All documents stored in the document cache can
be accessed via their Document_Id value. This allows
us to have a couple of common routines used to extract

3My use of the word ‘‘cache’’ may be confusing to some
folks. Caches are often short lived, whereas in this project,
may last longer. An alternate description would be ‘‘Docu-
ment Store.’’

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 199

Generating Configuration Files: The Directors Cut Finke

a document, given the Document_Id. For both Gener-
ate_File and web display, we want to get the document
one line at a time, until the end of the document. We did
this with a PL/SQL function Get_Line as seen in Figure
7. This gets the document as a CLOB from the database,
and breaks it out one line at a time.

Select Username, unixuid "UNIXUID", nvl(unixgid,4000) GID,
Public_Personal_Info GECOS, ’usr/bin/session’ SHELL,
’/home/’ || ltrim(to_char(mod(unixuid,100),’00’)) || ’/’ ||
username HOMEDIR, owner PERSON_ID, source USER_TYPE, ’BASE’ PLATFORM

from logins
where (substr(source,1,7) = ’PRIMARY’ or source = ’SECONDARY’)
Union
Select L.username, l.unixuid, nvl(l.unixgid,4000),

L.public_personal_info,nvl(SI.Shell,’usr/bin/session’),
nvl(SI.Home_Dir,’/home/’ || ltrim(to_char(mod(L.unixuid,100),’00’)) ||

’/’ || l.username), owner, source, nvl(SI.Platform,’BASE’)
from Logins L, special_Ids si
where l.source = ’SPECIAL’
and l.username = si.username

Figure 8: Oracle view: etc_passwd.

Function Get_Line(doc_id in number)
return varchar2
is

Next_Eol Integer;
Saved_Offset Integer;
Len Integer;

begin
if not Document_Open
then

Document_Open := True;
Document := Get_Doc(Doc_Id);
Document_Offset := 1;

end if;
next_eol := Dbms_Lob.Instr(Document,

chr(10), Document_Offset);
if next_eol = 0
then

Document_Open := False;
return null;

end if;
Len := Next_Eol - Document_Offset ;
Saved_Offset := Document_Offset;
Document_Offset := Next_Eol + 1;
Return Dbms_Lob.Substr(Document,

Len, Saved_Offset);
end Get_Line;

Figure 7: Get_Line function.

Generating XML from a Simple SQL Query
One of the handy PL/SQL packages that comes

with Oracle 8i, allows you to define a SQL query, and
pass it to a routine, and it will execute the query and
return an XML document. Now it is possible that the
existing Oracle table layout does not directly provide
you with the exact thing needed for your XML, so one
approach is to create an view.4 To create the XML ver-
sion of our password file, we created the view shown
in Figure 8. This view extracts all of our normal
userids (based on the SOURCE attribute) and then
combines that list with the ‘‘SPECIAL’’ userids. For
normal users, we derive the home directory from the

4A view is a predefined query that can operate on one or
more base table and be referenced much like a table.

UID and username, and add a default shell and a
default group id if none is supplied. For the special
ids, we generate those same fields if none are provided
in the Special_Ids table.

The next step is to turn that into XML. To do
this, we packaged up the Oracle routines, with some of
our own to give us the code seen in Figure 9. We sim-
ply set up the query of the view, and then pass it to the
XML_Cache_Maint package which will execute the
query, turn it into XML, store it and return the Docu-
ment_Id to us. This gives us the XML seen in Figure
2. The first bunch of parameters are used to tie into the
document cache, defining the schema name and
instance, adding a title and a description. Since we are
providing this as a single document (no sub docu-
ments), there is no Doc_Code value. The next set of
parameters are passed to Oracle and tell it how to label
the XML. The gen_dtd tells it to include the DTD at
the start of the document, and the last parameter tells
the document cache to create a new schema if one
does not already exist. This last argument is to help
bootstrap the system into place and should not be
needed for production file generations.
Generating XML from a Not So Simple SQL Query

The method of generating an XML document
from a SQL query can handle a lot of basic XML gen-
eration needs, but at times, we need more complex
documents. Consider the XML required to generate
the /etc/group file (see Figure 11). The DTD for this
(see Figure 10) is similar to that for /etc/passwd, but
with the change that one of the elements (userlist) is in
fact a subtype with multiple elements allowed.

As with the /etc/passwd example, the entire docu-
ment is wrapped in a <etc_group> tag, and has a num-
ber of <group_entry> entries. The expected group fields
(group name, group password, group id) as well as a
<platform> attribute that we use to define the type of
system for which this entry is intended. A group can
have zero, one or more than one members in it. To
handle these, we have the field <userlist> which will
hold as many usernames (all tagged with
<userlist_item> tags). You will note in the second entry
for the group user, the user list entry is written as
<userlist/>. This indicates an empty list.

200 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Finke Generating Configuration Files: The Directors Cut

<!DOCTYPE etc_group [
<!ELEMENT etc_group (group_entry)*>
<!ELEMENT group_entry (gname, gpasswd?,

gid, platform?, userlist?)>
<!ATTLIST group_entry platform CDATA

#REQUIRED>
<!ELEMENT gname (#PCDATA)>
<!ELEMENT gpasswd (#PCDATA)>
<!ELEMENT gid (#PCDATA)>
<!ELEMENT platform (#PCDATA)>
<!ELEMENT userlist (userlist_item)*>
<!ELEMENT userlist_item (#PCDATA)>
]>

Figure 10: DTD for /etc/group .

Query := ’Select username, unixuid, gid, gecos, homedir,’
|| ’ shell, person_id, user_type, platform’
|| ’ from XML_Etc_Passwd order by uid’;

did := XML_Cache_Maint.Cache_Query(
query => Query,
Schema_name => ’etc_passwd’,
Schema_instance => ’General RCS’,
d_title => ’ETC Passwd’,
d_code => Null,
d_desc => ’An XML version of the user base’,
row_tag => ’PW_Entry’,
row_set_tag => ’etc_passwd’,
row_id_attr_name => ’Platform’,
row_id_attr_value => ’PLATFORM’,
gen_dtd => True,
create_schema => True);

Figure 9: Create and cache XML from a query.

<etc_group>
<group_entry platform="rs_aix">

<gname>adm</gname><gid>4</gid><platform>rs_aix</platform>
<userlist>

<userlist_item>bin</userlist_item>
<userlist_item>adm</userlist_item>

</userlist>
</group_entry>
<group_entry platform="BASE">

<gname>user</gname><gpasswd>*</gpasswd><gid>4000</gid><platform>BASE</platform>
<userlist/>

</group_entry>
...

</etc_group>

Figure 11: XML Data for /etc/group .

Select Group_Name, Group_Passwd, Group_Id, group_index, nvl(platform,’BASE’),
cast (multiset (select username

from group_members gm, logins l
where gm.group_index = g.group_index
and gm.login_id = l.login_id

) as XML_Etc_Group_Userlist
) as userlist

from groups g

Figure 12: XML_Etc_Group view definition.

To generate this data, we need to access data from
three tables. The primary table is the groups table that holds
the basic information about the group (aside from the

membership). We then need to reference the group_mem-
bers table to get the list of members for each group and
finally the logins table to get the actual usernames. Fortu-
nately, Oracle provides us with a way of doing that.

To do this, we first define a type XML_Etc_
Group_Userlist as a TA B L E OF VARCHAR2(8). We then cre-
ate an object view of the groups as shown in Figure 12.
This creates a view of a complex object that includes a
sub-query for each row. When the view is referenced,
for each row (group), it obtains all of the members of
that list, and converts those usernames. That entire list is
returned as the single element userlist. When we pass a
‘‘ S E L E C T * FROM XML_ETC_GROUP’’ query to
Cache_Query routine, the XML in Figure 11 is generated.
Complex Generation

When the generation of the XML becomes too
complex for the query method, even with the complex

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 201

Generating Configuration Files: The Directors Cut Finke

views, we can fall back to building the XML element
by element. Although we could simply build it up as a
string using character manipulation, Oracle provides
some additional packages that can assist.

doc := XMLDOM.newDOMDocument; -- Get a fresh, empty document
root := XMLDOM.createElement(doc,’Institute_Directory’); -- Create a root node
dmy := XMLDOM.appendChild(XMLDOM.makeNode(doc),root); -- And link it in
loop

R := Generate_FacStaff_Dir.Get_Univ_Web_List;
exit when r.name is null;
Gen_Entry(root,R);

end loop;
did := XML_Cache_Maint.Cache_Dom_Doc(

Document => doc,
Schema_name => ’Department_Phone_List’,
Schema_instance => ’Institute Telephones’,
d_title => ’Institute Office Directory’,
d_code => Null,
d_desc => ’Directory of phone nums/web pages for Inst. Offices.’,
d_type => ’XML’);

Commit;
XMLDOM.freeDocument(doc);

Figure 13: Directory generation main procedure.

procedure Gen_Entry(node in XMLDOM.DOMNode, R in Generate_FacStaff_Dir.Univ_Tel_Rec) is
This_Node XMLDOM.DOMNode;
dmy XMLDOM.DOMNode;
Child Generate_FacStaff_Dir.Univ_Tel_Rec;

begin
-- Create the entry node and add it to the list
This_Node := XMLDOM.makeNode(XMLDOM.CreateElement(Doc,’Dir_Entry’));
dmy := XMLDOM.appendChild(node,This_Node);
-- Populate the top level records in the node
XML_DOM_Utils.Make_And_Append(This_Node,’Name’,R.Name);
XML_DOM_Utils.Make_And_Append(This_Node,’TELEPHONE’,R.Phone);
XML_DOM_Utils.Make_And_Append(This_Node,’URL’,R.Url);
XML_DOM_Utils.Make_And_Append(This_Node,’EMAIL’,R.Email);
XML_DOM_Utils.Make_And_Append(This_Node,’FAX’,R.Fax);
-- add in children ...
Loop

Child := Generate_FacStaff_Dir.Get_Univ_Tel_Children(R.Orgn);
exit when Child.Name is null;
Gen_Entry(This_Node, Child);

end Loop;

Figure 14: Directory generation Gen_Entry procedure.

There are several approaches for manipulating
XML documents, and one of those is the Document
Object Model (DOM). With the DOM model, the XML
document is represented by a tree structure built in
memory. This can be manipulated in a number of ways,
and then eventually exported as an XML document.
Oracle has a Java implementation of the DOM routines,
and they have provided a PL/SQL interface to them as
well. In Figure 13, we have the main procedure that we
use to generate our departmental directory.

This creates a new document using the DOM
routines, assigns a root node to it, and then calling
some existing directory code (Get_Univ_Web_List) we
get a list of all departments in the directory. We pass
each entry to a formatting routine (Gen_Entry – Figure
14) which formats each entry into a node on the XML

tree. Since a given entry may have sub entries, we
check each node for children, and append appropriate
directory entries where needed. When we reach the
end of the list of departments, we take the now fully
populated XML tree and save it in the document
cache. This XML document is now available for trans-
formation into other formats or to be written as XML
for external processes to manipulate.

Although this approach of building up an XML
document one element at a time may appear to be
tedious, it is actually less tedious than the previous
approach of generating HTML directly. In addition, by
moving the details of the presentation into the XSL
transformation, the resulting XML code is simpler
than the HTML it replaces. Another nice win with the
generation of XML is that since the transformation
can ignore extra data elements, it makes it much easier
to write generic XML generation routines that include
everything and let the XSL transforms sort it out. This
eliminates a lot of duplicate or very similar code and
ensures that logic changes apply everywhere.

202 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Finke Generating Configuration Files: The Directors Cut

Storing from a URL
While we are often able to generate our XML

data files from data stored in the database, we some-
times need to load in other files (such as XSL template
files) from other places. Another interface provided by
Oracle, is the ability to take a URL, query the web,
parse the XML document and return DOM format
XML document. We wrapped that in our own routine
(Figure 15) that then stores the resulting document in
the document cache. Since we save the URL used in
the document cache, we also have a Refresh_Url rou-
tine that will look up the URL from the document
cache, repeat the query, and if the resulting document
is valid, save the updated version in the cache.

function Cache_Url(
url in varchar2,
Schema_name in varchar2,
Schema_instance in varchar2,
d_title in varchar2,
d_code in varchar2,
d_desc in varchar2,
d_type in varchar2)

return number; -- Document_Id

Figure 15: Read and cache XML from a URL.

function Transform_And_Cache(
Schema_name in varchar2,
Document_Instance in varchar2,
Transform_Document in varchar2,
d_title in varchar2,
d_code in varchar2,
d_desc in varchar2,
d_type in varchar2)

return number; -- Document_Id

Figure 16: Transform and cache XML.

Unlike some of the other XML_Cache_Maint rou-
tines, this particular routine is generally only called
from our web interface to the document cache. Since
the URL query might fail, either due to connectivity
problems5 or the file obtained via the URL might no
longer be a valid XML document. Longer term, this
facility has much potential for transferring data into
the database from foreign systems with the proper
detection and reporting of failures.

Translation and Storing
In order to take advantage of the use of XML to

separate data extraction from the presentation, and still
take advantage of the version control support provided
by the original Generate_File program, we need to be
able to apply an XSL transform to an XML document
within the database, and store the resulting document
in the document cache. To this end, we have again
wrapped the Oracle routines, with a function of our
own (see Figure 16) to handle the translation and store
the results back in the document cache.

5When Oracle processes this request, the database server
attempts to make an HTTP connection to the specified web
server.

With this version of the function, we supply the
schema name, which is shared by both the Document
Instance (the base XML document) and the Transform
Document(the XSL transform document, which is just
another XML document.) We also provide the docu-
ment code for those instances with multiple docu-
ments. There is a version planned that will iterate over
all of the sub documents in an instance, and regenerate
all that are out of date (version control) automatically.

Conclusions and Futures

The ability to separate data extraction (like for
the online directory) from the presentation has really
helped in maintaining a consistent look and feel for
the University web pages; prior to this work, the
online directory pages lagged three to six months
behind the rest of the web sites in their appearance.
We still have a number of places where we generate
HTML for both static pages, and for dynamic applica-
tions. Many of these may get rewritten to generate an
intermediate XML format before the final HTML pre-
sentation.

Another area of exploration will be with Doc-
Book [12], which is a markup standard markup for
computer documentation and technical books devel-
oped by the joint efforts of Hal Computer Systems
International, Ltd., and O’Reilly and Associates, Inc.
This would be a good addition to the Service Trak [5]
project to allow us to integrate service documentation
with the current state of services at our site. XML will
also dovetail nicely into Service Trak for the genera-
tion of configuration files for Big Brother and other
service monitoring packages.

As use of the XML file generation grows, I expect
we will be tuning and expanding the access control
options for every stage of the document generation pro-
cess. I also expect to make some refinements in the way
we set up new targets for the Generate_File program. At
this point, each new target requires a new PL/SQL pack-
age. With the Cache_Query support, a number of file
generation targets can be reduced to a simple query and
a few parameters. This will make it much easier to
extract data from the database for external applications.

References and Availability

This project is part of (but not dependent on) the
Simon system, an Oracle based system used to assist
in the management of our computer accounts [7],
enterprise white pages [4], printing configuration [3],
All source code for the Simon system, including Gen-
erate File, is available on the web. See http://www.
rpi.edu/campus/rpi/simon/README.simon for details.
At present we have both AIX and Solaris versions of
the Generate_File program in production and efforts are
underway to finish a Java version. In addition, all of
the Oracle table definitions as well as PL/SQL pack-
age source are available at http://www.rpi.edu/campus/
rpi/simon/misc/Tables/simon.Index.html .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 203

Generating Configuration Files: The Directors Cut Finke

Some of the source code examples in this paper
have been modified from the actual production code. I
would suggest that if you are interested in this work,
that you review the current source code available from
the above URL.

Other Environments

XML has sparked a lot of interest from many
people and as a result, there are a lot of XML and
related resources available. I have found the SGML
module for Emacs handy and there are many other
editing tools that understand XML and XSL file for-
mats. Along with editing environments, there are a
number of programming interfaces and packages
available, many of them for free. Aside from the
PL/SQL packages provided by Oracle, there are Java,
C++, perl and others.

Acknowledgements

I would like to thank Mario Obejas for his shep-
herding of this paper, as well as Jeff R. Allen, the
LISA copy editor. I also want to thank Rob Kolstad
for his excellent (as usual) job of typesetting this
paper. Thanks also to Arlen Johnson and Kevin
Bishop of Communication and Collaboration Tech-
nologies at Rensselaer (these are those wacky web
guys who actually make good looking web pages) for
their help with the XSL and XML design, and Alan,
Andy, Bick and Kelly who helped review this paper.

Author Biography

Jon Finke graduated from Rensselaer in 1983
with a BS-ECSE. After stints doing communications
programming for PCs and later general networking
development on the mainframe, he then inherited the
Simon project, which has been his primary focus for
the past 12 years. He is currently a Senior Systems
Programmer in the Networking and Telecommunica-
tions department at Rensselaer, where he continues
integrating Simon with the rest of the Institute infor-
mation systems. When not playing with computers,
you can often find him building or renovating houses
for Habitat for Humanity, as well as merging a pair of
adjacent row houses into one. Reach him via USMail
at RPI; VCC 319; 110 8th St; Troy, NY 12180-3590.
Reach him electronically at finkej@rpi.edu . Find out
more via http://www.rpi.edu/˜finkej .

References

[1] Adler, Sharon, Anders Berglund, Jeff Caruso,
Stephen Deach, Tony Graham, Tony Graham,
Eduardo Gutentag, Eduardo Gutentag, Scott Par-
nell, Scott Parnell, and Steve Zilles, Extensible
Stylesheet Language (xsl) Version 1.0, http://
www.w3.org/TR/xsl , 2001.

[2] Bosak, Jon, Extensible Markup Language (xml)
version 1, http://www.w3.org/TR/REC-xml , 1997.

[3] Finke, Jon, ‘‘Automating Printing Configura-
tion,’’ USENIX Systems Administration (LISA

VIII) Conference Proceedings, pp. 175-184,
USENIX, San Diego, CA, September, 1994.

[4] Finke, Jon, ‘‘Institute White Pages as a System
Administration Problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pp. 233-240, USENIX, Chicago, IL, Octo-
ber 1996.

[5] Finke, Jon, ‘‘Automation of Site Configuration
Management,’’ The Eleventh Systems Adminis-
tration Conference (LISA 97) Proceedings, pp.
155-168, USENIX, San Diego, CA, October,
1997.

[6] Finke, Jon, ‘‘An Improved Approach to Generat-
ing Configuration Files from a Database,’’ The
Fourteenth Systems Administration Conference
(LISA 2000), pp. 29-38, USENIX, New Orleans,
LA, December, 2000.

[7] Finke, Jon, ‘‘Embracing and Extending Windows
2000,’’ The Sixteenth Systems Administration
Conference (LISA 2002), USENIX, November,
2002.

[8] Finke, Jon, ‘‘Process Monitor: Detecting Events
That Didn’t Happen,’’ The Sixteenth Systems
Administration Conference (LISA 2002), pp.
145-153, USENIX, November, 2002.

[9] Goossens, Michal and Sebastian Rahtz, The
LaTeX Web Companion, Chapter 6, ‘‘Tools and
Techniques for Computer Typsetting,’’ Addison-
Wesley, May 1999.

[10] Higgins, Shelly, Oracle8i Application Devel-
oper ’s Guide – XML, September, 2000.

[11] Portfolio, Tom, PL/SQL Release 8 User’s Guide
and Reference. Oracle Corporation, Part Num.
A58236-01, December, 1997.

[12] Walsh, Norman and Leonard Muellner, Doc-
Book: The Definitive Guide, O’Reilly and Asso-
ciates, ISBN 1-56592-580-7, Sebastopol, CA,
October, 1999.

204 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

