
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

CDSS: Secure Distribution of
Software Installation Media Images in

a Heterogeneous Environment
Ted Cabeen – Impulse Internet Services

Job Bogan – Consultant

ABSTRACT

CDSS is a framework for the distribution of software installation media images and their
contents over multiple file sharing protocols. The CDSS system provides a unique isolated server
instance for every accessing user, even when another instance of that server is already running.
CDSS uses the Linux host-based firewall system to transparently redirect inbound connections
from each user to his specific server instance. By doing so, multiple users can access the CDSS
server over the same protocol on the standard port without requiring any special configuration by
the user. Each user can only communicate with the server instance that was started explicitly for
him and that has been automatically configured by CDSS to allow access only to the files that he
has requested.

CDSS is currently implemented as a collection of web and shell scripts that run on Linux
servers that support the IPTables and IPChains firewalling systems. CDSS currently supports
image distribution via the following protocols: HTTP, FTP, TFTP, NFS, SMB, and AppleShare IP.
CDSS can share any filesystem image file stored on the server as well as the individual contents of
those images that the server can loopback-mount.

Introduction

In the last five to ten years, many systems have
been written to assist in automating the installation
and management of large collections of homogeneous
servers administered by a small team of systems
administrators. These programs have simplified this
complex administration task substantially. However,
not all installations enjoy the efficiencies provided by
such an infrastructure. Many sites have to deal with
large heterogeneous infrastructures where there are
many system administrators each controlling a small
cluster of machines. In this environment, distributing
software in a secure, reliable, efficient and effective
manner can be quite difficult. In this paper we present
the CD Sharing System (CDSS), a collection of scripts
and web interfaces for enabling and simplifying the
distribution of software and installation images to het-
erogeneous clients. First we will discuss common dis-
tribution solutions before presenting the server-per-
user IP redirection solution used in CDSS. We will
also cover the specifics of implementing CDSS over
common file distribution protocols provided by UNIX
servers. Finally, we will discuss the use of the server-
per-user IP redirection technique in other applications
and future enhancements planned for CDSS.

A very critical element of a software distribution
system is security, particularly with proprietary soft-
ware under a site or multiple-use license. Software
vendors rarely condone the wide-scale distribution of
images to non-licensed parties, so the goal of a soft-
ware distributor is to make the software easily

accessible to the licensed parties while denying access
to everyone else. When the number of licensed parties
is very small (a single group) or very large (freely-dis-
tributable software), this is not difficult. In the non-
trivial cases, there are a few possible solutions.

One solution is to manually distribute software
installation media to each eligible group. Each group
can then individually convert the image into a format
that is best for them. However, this method does not
scale to large numbers of groups, and causes signifi-
cant duplication of effort both on the part of the dis-
tributor and the users.

Another possibility is to place the images and
image contents on a central distribution server and
provide access to the images over standard protocols.
A system like this would necessarily require a substan-
tial cross-protocol authentication and access control
system to prevent unauthorized access. Unfortunately
some of the most important protocols have no authen-
tication systems at all, and the others that do often do
not share a common authentication mechanism. This
eliminates some protocols from central administration
entirely (e.g., TFTP), and makes managing the other
protocols a significant administrative hassle.

CDSS is a framework for software installation
media image distribution that provides simplified
maintenance, enhanced security, and substantial plat-
form independence. CDSS achieves this by running
unique and isolated versions of the sharing software
for each and every requesting user. On a server

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 173

CDSS: Secure Distribution of Software Installation Media Images . . . Cabeen & Bogan

providing images to six users, there may be two web
servers, three NFS servers, and six FTP servers all
running simultaneously. Even in a situation like this
the existence of multiple server instances is transpar-
ent to the users, as they are automatically forwarded to
their unique server instance using the transparent IP
redirection provided by the Linux IPTables and
IPChains firewall systems. By running a separate
server instance for every user, we can disable the
built-in authentication systems of each protocol
entirely, simplify the configuration and centralize the
authentication within CDSS, all without requiring any
special configuration on the client’s software. Finally,
users request and manage their images from a simple
web interface that gathers the information necessary to
create the share and runs the sharing script.

Figure 1: A CDSS server with one client.

The CDSS Solution

At its core, CDSS performs five major tasks:
• Image Selection: Users visit a web page listing

all of the available images. They select the spe-
cific images they need access to, supply the
necessary passwords for those images, and
specify the IP addresses that will have access to
the images.

• Image Preparation: The images that the user has
requested are linked into a directory created for the
user, and loop-back mounted into this directory.

• Server Configuration and Execution: The
servers necessary to provide the protocols
requested by the user are configured to allow
access to the user’s directory and started.

• Firewall Configuration: Once the servers for
each protocol have been started, rules are
inserted into the running firewall configuration
to redirect packets from the user to their non-
standard port for each protocol.

• Security: The scripts also ensure that individual
images and directories of images are not shared

to to those who do not know the required pass-
words for those images.

Image Selection

The first step in any sharing session is for the
user to make an image request. Each request needs to
contain a set of images, any passwords required for
those images and the IP addresses that will access the
images. In order to simplify this process, CDSS con-
tains a relatively simple web interface that allows the
user to easily select the set of images they want to
share and the protocols that they need access over. The
web interface builds the list of available images at run-
time, so there is no special configuration required to
share a new image other than to place it into the image
repository. The images can also be password protected
on an individual or per-directory basis. It is also possi-
ble for the server administrator to share a set of
images directly, without using the web interface.

Figure 1 shows the client web interface on a small
CDSS server. We can see that there are multiple directo-
ries that contain images. Each directory and file can
have a password or set of passwords associated with it.
If a user wants to access several files that require pass-
words, they can place the passwords in the input box for
each directory, or they can place multiple passwords in a
single input box. We also request a separate username
and password from the user at request time. This user-
name and password is used to identify the user’s share
and to prevent unauthorized removal of active shares.
Along with images and passwords, users must select a
set of protocols and specify any additional IP addresses
that also need access to the images.

Image Preparation

Once a user has successfully requested a set of
images, they must be prepared for his use. Initially, all
the images are stored together in a master directory

174 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Cabeen & Bogan CDSS: Secure Distribution of Software Installation Media Images . . .

tree. When a user makes a request, a new directory is
created on the same partition as the master tree and the
images requested are hard-linked into the newly-cre-
ated directory. At this time, we also create individual
subdirectories for each image and loop-back mount
the images into these directories. This allows the
requester to access the contents of each image directly,
without having to download the image in its entirety.
The loop-back mount can even be used for complete
network-based installations directly, without the need
to re-share the images. Because the images are loop-
back mounted, any CD image that can be mounted by
the system can have its contents shared by CDSS.
Non-mountable images such as audio CDs can be
shared, but only as raw images (the individual tracks
or files can’t be accessed).

Server Configuration and Execution

After the individual user directory has been cre-
ated, the servers that provide the requested protocols
need to be configured and started. It is important to
note that multiple server instances are started for each
user, one per protocol. Each server instance is config-
ured to listen for in-bound connections on a non-stan-
dard port that is specific to that user. This port is cho-
sen randomly and has no relation to the standard port
that the protocol runs on. For each protocol we have a
single standard configuration file, if one is required.
Before the server instance is started, CDSS copies the
standard configuration file into the user’s image direc-
tory and makes any necessary changes to indicate the
directory to be shared and the port to listen on. Then
the server is started. Running a separate server
instance for each user allows simple automated con-
figuration and enhanced security. However, the redun-
dancy in this system does place an increased load on
the server due to the large number of active server
instances. CDSS uses lightweight server programs
when available and configures them with a minimum
of options in order to reduce the CPU and memory
usage of the system as a whole.

Firewall Configuration

Once the system has prepared the images and started
the necessary servers, the firewall must be configured to
allow connections from the requesting user. Connections
to the standard ports for each protocol must also be cor-
rectly redirected to the unique port allocated to the user for
that protocol. Finally, the firewall rules must prevent non-
authorized users from connecting directly to the server
instances, bypassing the redirect in place on the standard
port for each protocol. CDSS currently supports the Linux
IPTables and IPChains firewalling systems, although it
could be extended to support any firewalling system that
can accept rule changes in real-time and transparently redi-
rect connections to alternate ports on the same machine.

Security

Although the firewall configuration described
above provides a large measure of security against the
possibility of unauthorized access to files, it is also
important to secure the web interface effectively.
While the web interface is a very convenient way to
provide access to large numbers of users without
administrator intervention, it also creates the risk of
exposing a setuid-root program to the entire allowed
user base. CDSS uses extensive checking and verify-
ing of user-provided input both in the web interface
and in the master sharing script to prevent the compro-
mise of the hosting server. The CGI web interface
itself runs as an unprivileged user and executes the
setuid-root script after the user has finalized the
request in the web interface. Although it would be
ideal to not have to run any part of the system as root
at all, root-level permissions are required to maintain
the loop-back mounts and adjust the firewall rules.
The master sharing script is exceedingly cautious
about verifying the data provided by the user and the
programs that it executes as root.

For most applications, the CDSS system will
need to run on a server that has no unprivileged
accounts on it as the media images are stored as
world-readable files. It may be possible to use filesys-
tem permissions on the master tree and the individual
user directories. However, CDSS does not currently
support this functionality. The substantial majority of
images shared by CDSS are ISO 9660 images or simi-
lar. Images such as these have no access controls
inherent in them. However, it is possible to share
images that do have filesystem access controls. If this
is the case, only those files that are world-readable can
be accessed remotely. The loop-back mount system
has no ability to edit a mounted image, so we must be
careful to avoid images that might be restricted in this
way. Such restrictions are also largely ineffective, as
the user can always download the complete image and
bypass the restrictions at their leisure.

Beyond the security risks inherent in running the
CDSS software itself, there is also the possibility of
vulnerabilities in the server software for each protocol.
In writing CDSS, we have attempted to choose pack-
ages with excellent security histories and only the fea-
tures we need. However, we do extensively rely on the
ability of the server software to restrict the users to
their assigned directories. Server programs that are
unable to restrict access to a single directory tree can-
not be used with CDSS. If flaws in the software allow
users to break out of their individual directories, then
any image file on the system could be accessed and
downloaded. In situations where this is a significant
concern, additional security could be introduced to the
system by chrooting or jailing the server processes
into the individual user directories.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 175

CDSS: Secure Distribution of Software Installation Media Images . . . Cabeen & Bogan

Features

Along with the primary tasks listed above, CDSS
also has several features that enhance the usefulness of
the system, even though they are not required for min-
imum functionality.
Web Interface

CDSS contains a simple and powerful web inter-
face that allows for individual users to arrange for any
number of images to be shared to them with no admin-
istrator intervention. The web interface allows for the
removal of mounts in order to allow a user to make
multiple requests in a single day.
Universal Access

The CDSS system provides enhanced security
and efficiency when distributing software installation
media images across a large organization. When a user
requests an image, they are allowed to specify the IP
addresses that are able to access this images being
shared. The means that you can share images to
machines that are half-way around the world, at home,
or even not installed yet. This flexibility is important
in larger organizations, where it might be necessary to
support remote users without incurring the costs and
risks involved in sending CDs to the remote sites,
where security and staffing may be a problem. It is
also possible to restrict access to the system to IP
addresses within the organization to prevent sharing to
unauthorized systems.
Securing Any Protocol

CDSS also enhances the security of some proto-
cols that were originally designed with no security
mechanisms at all. The most common of these is
TFTP, which is primarily used to distribute firmware
images to network devices and provide boot-up files
to disk-less machines and automated installation sys-
tems. Other than blocking access to TFTP entirely, it
is impossible for a vanilla TFTP server to provide dif-
ferent sets of files to different clients. By running indi-
vidual servers for each client, CDSS allows one mas-
ter server to distribute files over TFTP to many clients
without requiring specific or difficult setup on the
TFTP client. Other protocols like HTTP and NFS also
benefit from this feature, although they do have rarely
used authentication systems of their own.

Implementation Details

Although the operational concepts behind CDSS
are relatively simple, there are some subtleties in
implementing the firewalling and sharing each of the
protocols supported by CDSS. We will go over the
basics of the program, and then discuss the methods
and server software that we chose for each protocol.
Core Operation

The central functionality in CDSS is imple-
mented in a setuid-root perl script called share.pl.
Share.pl takes a number of arguments, including the
username of the user sharing the files, the IP addresses

to be granted access, the files being requested and the
passwords for the images. share.pl runs under the perl
taint system, so all of the user-provided data must be
checked to ensure that it does not contain any mali-
cious strings or data. Once the data has been checked,
a directory is created for the user, and the images
requested are hard-linked into that directory. Hard-
linking the files allows the servers to chroot them-
selves into the individual user directory without actu-
ally copying the files. Hard-links also eliminate any
possible problems with access permissions or the
inability of sharing software to follow soft-links.
However, hard-linking requires that all of the shared
files must reside on a single disk partition. CDSS
servers commonly use RAID or LVM in order to get
drives that are large enough to hold the substantial
amounts of data on installation media.

As a convenience to the user, we also loop-back
mount the requested images into newly created subdi-
rectories for each image. Although loop-back mounting
of images is fully supported by the Linux kernel, it is
not enabled in some distributor’s default kernels. Even
in the kernels where it is supported, the maximum num-
ber of simultaneous loop-back mounts is limited to 8.
Adjusting this requires modifying the max_loop con-
stant in the drivers/block/loop.c file in the kernel source.
Because of this limitation, every CDSS server will need
a custom compiled Linux kernel.

The configuration files that are used to start the
server instances are not the files that initially come
with the software. CDSS has a special repository of
custom configuration files that are designed to be
automatically configured for the per-user alternate port
system used by CDSS. In general, the files themselves
undergo few changes for use with CDSS. Once the
configuration files are in place, the servers are started
and the firewall rules are configured to allow access.

When a user has completed using a share, they
are expected to return to the web interface and remove
it. However, it’s very common for users to neglect to
do so. CDSS comes with a shell script intended to be
run out of cron that will automatically remove any
share that has been in place for more than 24 hours.
Shares that are needed for more than 24 hours can be
specially configured, but are discouraged. It could be
possible to use the automount system to manage the
loop-back mounts used by the CDSS system, but the
automount systems we looked at aren’t well suited to
CDSS. The automounter interfaces directly with the
kernel, and only a single automount process should be
run on a system at a time. Also, most automount sys-
tems do not have the ability to make other arbitrary
changes to the system when it is time to unmount an
active drive, and for CDSS, the unmounting the loop-
back is only one of the steps in removing a share.
Firewall Operation

CDSS relies heavily on the IP redirection fea-
tures that are part of the Linux IPTables and IPChains

176 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Cabeen & Bogan CDSS: Secure Distribution of Software Installation Media Images . . .

host-based firewalling systems. Without IP redirec-
tion, every user would have to specifically configure
their clients to connect with the server on alternate
ports. Some lightweight clients for network hardware
devices and embedded systems do not have systems to
allow for this level of customization. The IP redirec-
tion allows the system to support multiple users on the
same port simultaneously without requiring any spe-
cial configuration on the part of the client.

Figure 2: Multiple clients access a CDSS system.

The firewall is configured as follows. A unique
chain or table is created for each requesting user, and
all of his rules are placed into this chain. With the IP-
Tables system two chains have to be created, one in
the PREROUTING table, and one in the INPUT table.
We then link these newly created tables into the pri-
mary tables. All of the rules for a particular user are
placed into these tables, so that they can be easily
removed. Most protocols only require two firewall
rules: one to allow traffic from their IP to the ran-
domly allocated port for this protocol, and one redi-
recting the user’s traffic from the standard port to the
randomly allocated one. However, some protocols
(such as NFS) require a more involved setup.

Here are the commands run by CDSS to setup to
firewall for a HTTP-based share under the IPChains
firewall system. The IPTables firewall requires a few
more commands because the redirect target is only
supported in the nat tables. Figure 2 shows two clients
accessing shares and how the IP redirection allows
them to simultaneously access two different server
instances on the same port.

In this example, most variables are self-explana-
tory. The actual server for this user resides on $redir-
port, and $ip is the IP of the client for this image.
$IPCHAINS -N $username
$IPCHAINS -I $SYSTEM_CHAIN \

-i $INTERFACE -j $username
$IPCHAINS -I $username \

-p $proto -s $ip -d $MYIP \
$dport -j REDIRECT $redirport

$IPCHAINS -I $username \
-p $proto -s $ip -d $MYIP \
$dports -j ACCEPT

When it is time to remove a share, the removal
script flushes and removes the entire chain created for
that user and the rule in the system chain that activates
the user’s chain.

Protocol Specifics

Currently, CDSS supports file access over the
following protocols: HTTP, FTP, TFTP, NFS, SMB,
and AppleShare IP. In this section, we will look at
each protocol and discuss the server software used and
any non-standard configuration that is necessary.
HTTP

As a protocol with near-universal support, HTTP
can provide quick, convenient access to almost any
client. We chose Boa [5] as the server for the HTTP
protocol as it is very lightweight, easy to configure,
and high-performance. The only configuration options
that need to be set are the port and the directory to be
shared, and no special firewalling rules are necessary.
Since the client web interface runs on the standard
web port, we provide HTTP access on port 8080, the
standard secondary port for HTTP. Since this is a non-
standard port, we include a clickable link in the output
of the sharing script. Since execution over HTTP is
not commonly supported, HTTP is most often used to
get a single file or files out of a large image without
having to download the complete image. Boa also pro-
vides internal support for HTTP continue and internal
index generation.
TFTP

TFTP is a key protocol for CDSS to support,
both due to its extensive use in automated installation
and embedded systems, and because it lacks any
authentication system at all. By providing TFTP
through the CDSS system, a layer of security can be
placed in front of this normally insecure program. In
many environments, the security issues of TFTP are

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 177

CDSS: Secure Distribution of Software Installation Media Images . . . Cabeen & Bogan

ameliorated by firewalling the TFTP port to the small
set of IPs that the TFTP clients reside on. CDSS
allows for a central distributor to maintain a TFTP
server without the overhead of maintaining a lengthy
firewall access list.

TFTP is traditionally run out of inetd, running on
a UDP port. In a CDSS environment, we use netcat
compiled with the -DGAPING_SECURITY_HOLE.
That allows the use of the -e argument, which emu-
lates inetd for a single program. Because netcat only
allows a program name to be provided with the -e
argument, we also create a simple shell script that con-
tains the arguments to tftpd. Other than the script and
the standard firewall rules, no special configuration is
needed for tftp.

AppleShare IP
AppleShare IP is a recent addition to the Apple file

sharing protocol. Before its release in MacOS 8, Apple-
Share was only available over the AppleTalk protocol.
However, we can now use AppleShare IP to provide
access to the images on the CDSS system to older Mac-
intosh systems that are not running MacOS X. (MacOS
X supports Windows sharing as well.) For MacOS sys-
tems prior to MacOS 8, the only supported option is to
copy the files over using HTTP or FTP. We use the
netatalk package for the actual sharing, and no special
firewall rules are required beyond the single redirect.

SMB
File sharing for Windows systems is provided by

the SMB protocol. Although it is quite a complex pro-
tocol, we only need to provide the sharing portion of
it. The most difficult part of sharing over SMB is actu-
ally client support rather than server support. The
SAMBA package has excellent support for SMB and
is easy to configure, but many windows machines
have difficulty accessing IP-based shares. However,
with some careful configuration, most windows
machines can access IP-based SMB shares.

Configuring Windows clients to access IP-based
SMB shares can be quite difficult. Traditionally, Win-
dows has used an Ethernet broadcast protocol known
as NetBIOS to enable file sharing between windows
machines. When IP based sharing was introduced in
windows NT, the WINS system was created to create
linkages between NetBIOS names and IP addresses.
Unfortunately, the WINS and NetBIOS systems often
cause difficulties in accessing IP shares. We have had
the most success with Windows NT, Windows 2000,
and Windows XP machines, although Windows 95,
Windows 98, and Windows ME machines can attach
to IP-based shares if NetBIOS is completely disabled
and the hosts are correctly listed in DNS or the Win-
dows LMHOSTS file, which stores linkages between
machine names and IP addresses.

NFS
Of all the protocols that we support, NFS

requires the most complex configuration. On most

systems, NFS support is provided by the kernel itself.
However, since CDSS requires multiple running
copies of the same server, we have to use the user
space NFS server. The user space NFS server consists
of multiple small programs that each support one part
of the NFS protocol. CDSS requires only nfsd and
mountd. An interesting element of NFS is that is tradi-
tionally runs on randomly allocated ports, unlike all of
the other protocols listed here. In order to direct
clients to the proper port, the nfs daemon registers
itself with the RPC portmapper. When clients want to
mount an nfs share, they discover the actual port for
NFS from the portmapper, and then connect directly.

Because we are using IP redirection to move the
connections to a different port for every user, we have
to override the redirections made automatically by the
portmapper. This is performed by replacing the
portmap configuration after each NFS server is run.
By replacing the configuration with a standard one, we
can then configure our IP redirection system to cor-
rectly send each client to their individual NFS servers.
This sort of configuration replacement is necessary for
any protocol that uses the RPC system to manage its
communication. Unfortunately, some systems do not
have a user space NFS server, or they do not allow for
the NFS server to open a specific port. Non-standard
NFS systems or modifications to the Linux user space
NFS server may be required in these cases. Because of
the transient nature of CDSS shares, we strongly rec-
ommend that clients using NFS configure their mounts
as soft mounts. This allows the client to kill processes
waiting for data from the NFS server or unmount the
share entirely if their share has been removed.

Other Applications

Although CDSS was written to share software
installation media images, it could easily be extended
to provide access to programs or other services. It’s
important to note that we have endeavored to use
lightweight servers and protocols whenever possible.
Although it is possible to use the IP redirection tech-
niques of CDSS with more substantial systems, the
ability of the system to service multiple users would
be hindered. CDSS is best suited to protocols without
authentication built-in, or when different users need
completely different configuration and the software
does not support having per-user settings.

Conclusion

This paper introduces a system for distributing
software installation media images to a large set of
heterogeneous clients. By using a unique server
instance for every user, we are able to simplify and
largely automate the configuration of the unique
server for each user. Even though we may be running
many copies of the same server, per-user IP redirec-
tion allows all of the server instances to appear on the
standard port for the system, even though they are

178 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Cabeen & Bogan CDSS: Secure Distribution of Software Installation Media Images . . .

actually completely separate. This system allows for
enhanced security and efficiency while reducing the
administrative overhead of maintaining such a server.

Availability

CDSS is licensed under the GPL and is currently
being hosted at SourceForge. The master web site is
http://cdss.sf.net/ .

Author Information

Ted Cabeen has been working with UNIX sys-
tems for 10 years, and has been administrating them
professionally for the last six. He developed CDSS at
the University of Chicago and now works for Impulse
Internet Services in Santa Barbara, CA. He can be
reached at secabeen@pobox.com .

Job Bogan is currently working as a consultant
specializing in clustering and administration for large
academic institutions and companies.

References

[1] SMCC, ‘‘LOFS: Loopback Virtual File System,’’
SunOS 5.5.1 Reference Manual, Section 7, Sun
Microsystems, 20 March, 1992.

[2] Linux IP Firewalling Chains, http://www.netfilter.
org/ipchains/ .

[3] The Netfilter/IPtables Project, http://www.netfilter.
org/ .

[4] Olaf Kirch, Universal NFS Server for Linux,
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/
people/okir/ .

[5] The Boa Webserver, http://www.boa.org .
[6] Netatalk, A Kernel Level Implementation of the

AppleTalk Protocol Suite, http://netatalk.sf.net/ .
[7] Samba, A SMB/CIFS Server Suite, http://www.

samba.org/ .
[8] ProFTPD, Highly Configurable GPL-Licensed

FTP server Softwarek, http://www.proftpd.org/ .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 179

180 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

