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ABSTRACT

HotSwap is a program that provides transparent failover for existing UNIX servers without
modification or special hardware. HotSwap runs two instances of a server on independent
machines in sync, so that if either machine fails, the other may assume control without breaking
TCP connections or losing application state. Replication and failover is transparent to both clients
and servers. Servers are not aware that a backup replica is maintaining state. Clients are unaware
that a backup server has taken over from a failed master. This system is applicable to a wide
variety of common servers including Java, Apache, and PostgreSQL and other servers that may
have no other mechanisms for fault tolerance.

Introduction

Internet server applications must be scalable to
many users, constantly available, and provide reliable
service despite server failures, maintenance interrup-
tions, and disasters. These features are critical in the
long term, but are usually only considered after initial
development. Most server applications today are
developed with inexpensive components that do not
support reliability, high availability or scalability, or
any form of fault tolerance.

Adding fault tolerance to an existing system can
be difficult and expensive, and may not be possible for
some kinds of server applications. Many Internet server
applications are developed using freely available tools
like Apache, PHP, MySQL, etc. None of these applica-
tions has built-in fault tolerance. Current techniques for
adding fault tolerance will allow clients to reconnect to
a new server if one fails, but connections and state at
the failed server will be lost. Fault-tolerant database and
shared file servers are expensive. Implementing fault
tolerance in a custom server is difficult.

HotSwap is a program that adds transparent fault
tolerance to existing servers without modification.
Application state is duplicated on two independent
boxes that run in parallel. If one fails the other can con-
tinue without interrupting client connections. Replica-
tion is transparent to clients and servers, adding trans-
parent failover to existing servers without modification.

There are several other techniques for fault toler-
ance [Coulouris01]. Each makes tradeoffs between
degree of fault coverage, cost, and abilities. Scalability
is the ability to increase performance by adding system
components. Availability is the probability that a system
is functioning properly at any moment in time. Reliabil-
ity is the probability that a system will continue to func-
tion for a fixed period of time. Recoverability is the
ability of a system to return to a functioning state with-
out data loss after a failure. Total cost includes hard-
ware, software, development, training, and maintenance.

Disaster recovery is the ability to recover from a large-
scale disaster like fire or earthquake that can damage a
wide area. A single system image reduces maintenance
costs when several components can be maintained as a
single logical unit.

Different capabilities compete with each other.
Adding system components to increase scalability and
availability will increase cost and may decrease relia-
bility. Reliability and recoverability require synchro-
nized backups, which may decrease performance and
scalability. Disaster recovery requires backups sepa-
rated by long distances at reduced bandwidth, slowing
system synchronization and performance.

Faults may come from software bugs, hardware
failures, or disasters. Hardware failures should be
masked by switching to a backup system. Disaster
may strike a whole building or geographical area.
Recovering data after a disaster is crucial, but restor-
ing network connections may require new routing.

Different servers have different requirements for
fault tolerance. Web servers use short transactions,
which can usually be repeated if they fail. Databases
and file servers that update client data must be careful
to maintain consistency with their backups. Telecon-
ferencing and gaming servers maintain real-time state
in memory.

Let’s quickly review current techniques for
adding fault tolerance.1

Periodic Backup
Periodic backup is the easiest way to add disaster

recovery. If a  system crashes, a new one must be
rebuilt from backup. Starting a new database server
and restoring its backup may take some time. Changes
to the system since the last backup are lost. Running
applications may have to be shut down to prevent file
1The Aberdeen group has published an excellent compari-

son of current high-availability products for Linux at http://
www.legato.com/resources/whitepapers/Aberdeen%20White
%20Paper%20-%20Linux1.pdf .

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 205



HotSwap – Transparent Server Failover for Linux Burton-Krahn

updates during backup. Connections to the system will
be lost if it fails, and will have to be restarted when the
new system is restored.

There are backup schemes for whole processes,
not just files. Process checkpointing and hijacking
[Skoglund00] is a technique of for preserving and
replicating application state by serializing the entire
state at some point and restoring it later. A process
checkpoint consists of its data pages, executable path,
and system descriptor like open files, file pointers, etc.
Condor2 [Zandy99], [Litzkow97] uses application
checkpointing to move an application completely from
one machine to another. Like backing up data files,
checkpointing is not suitable for real-time synchro-
nization between two running processes.
Server Clusters

A server cluster uses a front-end director to dis-
tribute client requests over several back-end servers. All
back-end servers provide a consistent application inter-
face. Consistency requires that all back-end servers use
a shared database or file system. If a back-end server
fails, the director will send new client requests to
another server in the pool. The new server will retrieve
the client’s state from the shared database.

The Linux Virtual Server3 project provides a
director and a framework for back-end servers to use a
shared Coda file system. F5Networks’s BigIP4 acts as
a Director monitoring RealServer health and distribut-
ing requests. BigIP also works redundantly and pre-
serves client connections and encryption state on fail-
ures. Cisco’s LocalDirector5 is a similar product.
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Figure 1: Schematic diagram of server cluster.

Directors are usually redundant. If one fails, the
other assumes its IP address to accept new connections.
Directors monitor the health of the back-end servers and
remove failed servers from the pool. Directors may ter-
minate client connections and attempt to repeat client
requests if a back-end server fails. Directors do not
address reliability or recoverability. That’s up to the
back-end servers and common database.
2http://www.cs.wisc.edu/condor/ .
3http://www.linuxvirtualserver.org/ .
4http://www.f5networks.com/ .
5http://www.cisco.com/warp/public/cc/pd/cxsr/400/index.

shtml .

It is important to distinguish between availability
and reliability in a server cluster. Clusters increase
availability and scalability, but not reliability. If a
server fails, another may be substituted for new con-
nections, and thus availability is increased. However,
once a client is connected to a back-end server, the
connection’s reliability is determined by the reliability
of the chain of the director, back-end-server, and com-
mon database. The more components in the chain, the
less reliable it is. Consider a server failure part way
through a long file download. The replacement server
will not know the state of the connection at the time of
the failure, and the download must be restarted from
the beginning.

Some directors like NetScaler6 buffer the client
transaction requests and will repeat them if the server
fails. These are built to support short non-interactive
transactions, like HTTP requests. Interactive or
unbounded connections cannot be buffered and retried
at the director level.

Server clusters are ideal for web server applica-
tions. There are many simultaneous client connec-
tions, but they are each short and mostly read-only.
The client’s session (e.g., a shopping cart) is the only
information that changes frequently, and that is stored
on a shared database. None of the servers are expected
to maintain state themselves. Client connections will
be broken if a Director or RealServer fails. A broken
connection is a minor inconvenience unless it’s during
a long download that must be repeated.

It is up to the back-end servers to synchronize
shared state. Server machines may all connect to a cen-
tral database or file server. If a middle server fails, all
its state is lost and client connections are broken, but
new client connections are directed to a new server. If a
shared database fails, the whole cluster fails.
Fault Tolerant Applications

Some commercial database and file servers have
built-in support for system synchronization and fail-
over. Strict application consistency can seriously
degrade performance. Lazy replication improves perfor-
mance but relaxes consistency guarantees. Database
6http://www.netscaler.com/product/technology.html .
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replication is still an active area of research [Patiño00,
Wi e s m a n n 0 0 ] ) .

Commercial databases like Oracle7 and Solid8

provide good application-level fault tolerance. Fault
tolerant file servers include NetApp Filer.9

Server clusters need a fault-tolerant shared
database for reliability. However, most fault-tolerant
applications are expensive. Rewriting an application to
use a new database is not trivial. Converting an exist-
ing application usually requires considerable expense,
training, and maintenance.

Fault-Tolerant Programming Frameworks

Developing a fault tolerant server is difficult.
Another option is to write or rewrite a custom server
from scratch using a development framework that sup-
ports fault tolerance like J2EE and Enterprise Java
Beans (EJB10)

These frameworks work well for the domain they
were designed for. EJB is designed for writing Web-
like applications where scripts provide an interface to
a common database. EJB provides facilities for load
balancing requests, maintaining client sessions, and
fault tolerance.

Close examination of the EJB specification how-
ever reveals a limitation of EJB fault tolerance: trans-
actions must be idempotent. If a transaction fails, the
framework will automatically repeat it. Repeating a
transaction must be equivalent to doing it exactly
once. Fetching a record from a database is idempotent,
but decrementing a balance it not. Applications that
require non-idempotent operations have to implement
their own fault tolerance.

Fault-Tolerant Hardware
Fault tolerant hardware has good performance,

but it has been traditionally very expensive. Lately
though, hosts with all redundant hardware components
have become available at competitive prices. The Stra-
tus ftServer11 is quite reasonable.

Other systems use shared hardware like a shared
SCSI disk to preserve state when a master fails. The
shared disk itself may be fault-tolerant. However, the
server ’s memory state and all client connections will
be lost.

These are excellent solutions for avoiding hard-
ware failures. They are often expensive though.
Backup servers are connected by cables, so they are
cannot be geographically separated. When disaster
strikes the backup and master will both be vulnerable.

The different levels of RAID illustrate the trade-
offs between redundancy, performance, cost, and
7www.oracle.com .
8www.solidtech.com .
9http://www.netapp.com/ .
10http://java.sun.com/products/ejb/ .
11http://www.stratus.com/products/nt/ .

recovery. The simplest, RAID1, mirrors two disks. It
is completely redundant, and does not increase perfor-
mance. Higher RAID levels trade scalability for
redundancy at increased cost.

Shared disk is a 
single point of 

failure

Server Server

Shared Disk

Two servers 
share a single 
physical disk

Figure 2: Shared hardware with a single point of fail-
ure.

TCP Connection Migration

All the servers mentioned so far break client con-
nections on failure because they do not attempt to pre-
serve TCP state. TCP connections are managed by the
operating system itself. Even if an application synchro-
nizes its internal state with a backup, the backup will not
be able to reconstruct the sequence numbers, windows
sizes, and timeouts of the master’s TCP stack because
that information is in the kernel, not the application.

There is recent research on moving TCP state to
another machine. However, this research does not
address how a client or server should transfer applica-
tion state as well as TCP state. These systems provide
facilities for moving TCP connections from a failed
host to another. However, the server on the new host is
responsible for ensuring that its state is consistent with
the failed server. The server must be explicitly written
to synchronize application state with a backup server.

[Snoeren01] describes extensions to the TCP
protocol that allow a server or client to redirect a TCP
connection to a new server without breaking the con-
nection. This is handy for load balancing and avoiding
failed servers. However, The TCP stack at both ends
must be written to recognize these new TCP packet
options. Replacement servers must implement their
own synchronization for application state.

The reliable sockets system, Rocks [Zandy01],
can preserve and reconnect TCP connections after link
failures, address changes, and extended disconnection.
Rocks does work without recompiling programs.
However, servers must be rewritten to synchronize
state. Rocks provides an API for managing and detect-
ing resumed TCP connections.

Some redundant server cluster directors can syn-
chronize both TCP and SSL state with their backups.
If one director fails, the backup can continue the TCP
connections. This only applies to the directors, not the
back-end servers. A back-end server’s TCP state is
lost on failure.

[Alvisi00] proposes a system that allows a server
to keep its TCP connections open until it restarts after
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failure. If the application is written to exploit this fea-
ture and it can reconstruct its state after failure, it can
avoid closing client connections. However, the server
must still be able to reconstruct its state after a crash.

[Aghdaie01] Presents a web server that preserves
TCP connections and server state over failures. This is
an example of a web server specially written to trans-
fer both TCP and application state to a backup. This is
not a general solution for all servers.

[Daniel99] presented a system similar to
HotSwap. It used ptrace() to catch, redirect, and syn-
chronize system calls between servers. However, that
system used a central modified NFS server to provide
a common file system. HotSwap does not use a shared
file system; all servers are totally independent.

Shim library redirects system calls: 
time(), accept(), recv(), send()

HotSwap

TCP/IP Layer

Server

Master Host

HotSwap

TCP/IP Layer

Server

Backup Host

File System

File System

Both HotSwaps Synchronize

Backup drops output

Client

Client Host

Both HotSwaps see 
Client input

hotshim.so

hotshim.so

Only Master’s output 
is sent to Client

Figure 3: How HotSwap works.

HotSwap

HotSwap maximizes availability and reliability
by providing a hot backup server that maintains a
complete independent copy of a master server’s state.
The backup is complete and dynamic, so it can take
over all client connections when a server fails without
interruption. It minimizes cost by adding this ability to
almost any server without modification or special
hardware. Both master and backup appear as a single
computer on the network, and thus HotSwap provides
a single system image. The tradeoff is a small amount
of overhead to keep the master and backup servers in
sync. HotSwap does not address scalability; backup
servers do not share the load.

How it Works
HotSwap starts two identical instances of the

same set of programs on two independent machines, a
master and a backup. The programs are started from
the same initial state, with duplicate file systems. As
they run, HotSwap ensures that both copies are syn-
chronized.

Synchronization means that both the master and
backup programs see exactly the same input and pro-
duce exactly the same output. When a client connects,
both servers receive the new connection. When a
client sends data, both servers receive it. When the
master server makes a system call, like requesting the
current time, HotSwap ensures the backup gets the
same value. In this way, both servers will go through
the same sequence of state transitions and produce the
same output. The master sends its output to the client.
The backup verifies it would produce the same output
as the master, and then discards its output.

If the master fails to produce output, or if it
detects an internal error, the backup takes over. The
backup can take over immediately since it is already in
the same state as the master was before the master
failed. The backup simply stops discarding its output.
This is how HotSwap achieves transparent failover:
the backup produces exactly the same output as the
master would at any moment but discards its output
until the master fails.

Both servers must start in the same initial state.
To start the system, the two HotSwap processes syn-
chronize their file systems then execute their server
programs. After a failure, a new backup server can
synchronize files without interrupting the surviving
master. The operator can later choose when to restart
the master and new backup to achieve full fault toler-
ance again.

Details of Synchronizing State

Synchronizing server state is critical. HotSwap
requires that a server will produce the same output if it
receives the same input from a particular set of
sources. HotSwap synchronizes system calls like
time(), getpid(), socket(), recv(), send(), etc. These are
all the inputs used by our pilot servers, and they are
enough to ensure that the servers we have tested are
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synchronized. Some servers may use other sources of
input like inode numbers or direct access to hardware
that HotSwap cannot catch or synchronize. HotSwap
may not be able to synchronize these servers, but it is
likely that the servers themselves could be modified
slightly to work with HotSwap to synchronize.
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Figure 4: Download performance.

HotSwap synchronizes system calls by relinking
programs before they run. In UNIX and Windows,
applications are dynamically linked against libraries
that provide system calls. HotSwap inserts a shim
library that redefines system calls to transfer control to
the running HotSwap program. HotSwap also has to
synchronize network traffic at the TCP/IP level.
Clients and servers usually communicate over TCP, a
network protocol that breaks a stream of data into
packets that are reassembled in sequence and
acknowledged. The operating system (OS) is responsi-
ble for managing TCP connections. When a program
calls send(), the OS adds that to the outgoing TCP
buffer, sends a TCP packet and changes the TCP con-
nection state. A TCP connection has many state vari-
ables, including packet sequence numbers, timeouts,
buffered packets, and acknowledgements. HotSwap
must synchronize these state variables, so it uses its
own TCP/IP network stack.

HotSwap constantly intercepts and synchronizes
a subset of system calls, just enough to ensure syn-
chronization between processes. It also runs in a file-
system-only mode where is just synchronizes changes
to the local file system. This allows a backup to main-
tain an active backup of the master’s file system with-
out incurring the extra overhead of full process syn-
chronization. This mode is used for disaster with a
geographically remote backup.

Limitations

HotSwap relies on each server receiving input
only from the set of system calls that HotSwap moni-
tors and synchronizes. HotSwap synchronizes all sys-
tem calls to sockets, time, file stats, process ids,
semaphores, and the /dev/random device. HotSwap
cannot synchronize state if a server receives input
from hardware devices or from the timing of asyn-
chronous signals.

The master and backup systems must start at the
same time with identical file systems to ensure they
receive the same input from local files. HotSwap runs
chroot()’ed in a server directory to minimize the
amount of files required to synchronize. The chroot()
has the extra advantage of improving security by lim-
iting the server’s access to the file system.

After a server fails, the survivor will continue
running by itself as a solo master. A new backup sys-
tem will continue to synchronize files with the running
master, but will not synchronize applications until the
running master restarts. If the running master fails, the
backup will restart with a synchronized file system,
but existing connections and transactions will be lost.

Results

HotSwap has been tested with Perl, Java, Python,
Apache, OpenSSL, OpenSSH, and PostgreSQL under
Linux.

The first test was replicating a simple web server
written in Perl to serve video files. The master was dis-
connected in the middle of a video, and the client con-
tinued displaying the video from the backup without
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interruption. The same test was then performed using
Java, Python, and Apache with good results.

The OpenSSL s_server program was tested to
evaluate an encrypted web server. Encrypted connec-
tions are usually difficult to replicate, since each side
must maintain identical encryption state, and that
changes with every byte processed on an encrypted
stream. However, as long as the master and backup use
the same seed values to generate their initial session
keys, they should maintain the same state. Unfortu-
nately, our initial test with OpenSSL failed! Close
examination of the OpenSSL source revealed that
OpenSSL used an uninitialized buffer plus bytes from
/dev/urandom for a seed. This highlights a limitation of
HotSwap; processes must use only input from synchro-
nized system calls. Fortunately, we easily patched the
OpenSSL server to initialize its buffer and use only
/dev/urandom, and the test succeeded. We tested
s_server to measure the overhead for just intercepting
and monitoring system calls and full replication. We
measured the time required to download various sizes of
files to see how the overall bandwidth of the server was
impacted by replication, using commodity hardware.

The results show that intercepting and monitor-
ing system calls only introduces a 1.4% overhead, and
full replication to another box reduced bandwidth by
only 9.6%.

The OpenSSH tests demonstrated that HotSwap
really does provides a single system image where
master and backup appear as one computer. We used
ssh to log in and edit files and scp to upload files. All
these actions were replicated on both the master and
backup simultaneously and transparently.

Replicating PostgreSQL demonstrated that Hot-
Swap can immediately add transparent failover to a
database without modifying the database itself.

Conclusion

HotSwap has unique properties. It adds transpar-
ent failure and a single system image to servers with-
out any shared components. Backup servers maintain
identical file-system and internal memory states with
the master. Client connections are never lost or broken
on server failure. Servers do not have to be modified,
with few exceptions. The price of fully transparent
replication is a small amount of overhead.

Availability

HotSwap will be available in server kits that
include a complete tested server and the minimal root
file system required to support them. We expect
HotSwap server kits to be available for download
from www.hotswap.net in October, 2002.
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