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Abstract—In this paper, we present an approach for detecting
e-mail spam originating hosts, spam bots and their respective
controllers based on network flow data and DNS metadata.
Our approach consists of first establishing SMTP traffic models
of legitimate vs. spammer SMTP clients and then classifying
unknown SMTP clients with respect to their current SMTP
traffic distance from these models. An entropy-based traffic
component extraction algorithm is then applied to traffic flows
of hosts identified as e-mail spammers to determine whether
their traffic profiles indicate that they are engaged in other
exploits. Spam hosts that are determined to be compromised
are processed further to determine their command-and-control
using a two-stage approach that involves the calculation of
several flow-based metrics, such as distance to common control
traffic models, periodicity, and recurrent behavior. DNS passive
replication metadata are analyzed to provide additional evidence
of abnormal use of DNS to access suspected controllers. We
illustrate our approach with examples of detected controllers
in large HTTP(S) botnets such as Cutwail, Ozdok and Zeus,
using flow data collected from our backbone network.

I. INTRODUCTION

E-mail spam, also known as unsolicited bulk e-mail or
unsolicited commercial e-mail, is the practice of sending
unwanted e-mail messages frequently with commercial content
in large quantities to an indiscriminate set of recipients. Spam
is technically delivered the same way as legitimate e-mail,
utilizing the Simple Mail Transfer Protocol (SMTP).

Currently, a large fraction of spam comes from botnets, i.e.,
large collections of compromised machines controlled by a
single entity, with the implication that e-mail spam detection is
an effective strategy for subsequent botnet detection. In this pa-
per, we present an approach for identifying botnet command-
and-control by first detecting e-mail spam originating hosts
based on SMTP flow traffic characteristics. Spam hosts whose
host traffic profiles indicate that they are compromised are
processed further using real-time botnet analysis algorithms
to identify centralized or distributed botnet controllers.

The paper is organized into the following sections: In
Section II, we summarize related work on spam bot detection
and describe the contribution of the current work. In Section
III, we derive multivariate traffic models (based on network
flow data) of spam and legitimate SMTP clients and present
a Bayesian classification rule for classifying SMTP clients
into spammers vs. legitimate e-mail clients. In Section IV, we
analyze the modeling accuracy in classifying blacklisted and
whitelisted SMTP clients. Section V describes our approach in
automatically detecting controllers of the compromised spam

hosts. Finally, Section VI provides a summary of the paper
and conclusions.

II. RECENT WORK AND CURRENT CONTRIBUTION

Two main approaches used currently to detect/mitigate spam
include e-mail payload content filtering (e.g., [1, 14]), and
address-based filtering [12]. In content filtering, the header
and body of an e-mail are analyzed for certain keywords,
patterns (e.g., URL strings), message signatures, and message
authentication policies that are characteristic of e-mail spam.
In address-based filtering, the originating IP address and
session establishment data are analyzed for reputation, domain
signature, connection authentication policy, session signature,
protocol, traffic and connection limits. IP addresses of spam
e-mail clients are entered into centrally maintained databases
called Real-time Blackhole Lists (RBLs) or, if accessible via
the Domain Name System (DNS), DNS blacklists (DNSBLs)
such that Mail Transfer Agents (MTAs) can reject or throttle
all mail either originating from or relayed by a listed host.

In the case of content filtering, blocking rules need to be
updated frequently and new spam corpora must be used for re-
training (if the keywords are learned dynamically by means of
a Bayesian filter) as spammers devise new content and formats
to circumvent the filters. A recent content-based approach
[16] achieves low false positive rates for template-based spam
generated by certain botnets, by deriving the very templates
used to create the spam (in the form of regular expression
signatures). However, it can be evaded by spam that uses
multiple interleaving templates generated by different bots
or spam that is not based on templates. In general, content
analysis results in a higher degree of privacy intrusion and
processing overhead. In the case of address-based filtering,
if spammers use addresses without reputation (e.g., when
the proportion of spam e-mail from dynamic addresses is
significant [21], or if low-volume spamming occurs from
spammers who are compromised hosts [17]) or if spam sources
become more short-lived [19], then an address-based filtering
approach based on blacklists will be less effective.

A social network based approach to spam detection applies
a graph-theoretic analysis to interactions between e-mail ad-
dresses to construct a user’s personal e-mail network [3, 4].
This approach requires header information of all the messages
in a user’s inbox; hence, it is considered invasive. A graph-
theoretic approach for differentiating legitimate e-mail client
MTAs that submit SMTP traffic to legitimate server MTAs



only vs. spam client MTAs that submit SMTP traffic both
to legitimate server MTAs and to hosts that do not typically
receive SMTP traffic, is presented in [5]. Since this work is
based on SMTP transport header data, there is minimal privacy
intrusion. However, the assumption that a spammer will also
send SMTP traffic to ”illegitimate” e-mail servers may not be
warranted.

Several investigators have characterized spam vs. legitimate
SMTP traffic and concluded that these two types of traffic
are statistically different. For example, Gomes et al. [6],
using e-mail server log data, indicated that the sizes of the
legitimate e-mails are much more variable and have a heavier
tail with spam messages exhibiting both lower average e-mail
message size and less variation in e-mail message size. This
characterization is supported by Schatzmann’s et al. [18] flow
analysis of SMTP traffic using netflow data collected from
border routers of a major ISP and by Hao’s et al. [10] analysis
of McAfee’s TrustedSource e-mail log data. However, the first
two groups of investigators did not specify a procedure for
classifying SMTP clients into e-mail spammers vs. legitimate
SMTP clients so that their work cannot be directly applied to
real-time SMTP client classification.

Some studies (e.g., [24, 22]) have approached the problem
of spam botnet detection by identifying spam bots participating
in the same spam e-mail campaign under the assumption that
hosts participating in the same campaign are part of the same
botnet. However, [11] demonstrated that this assumption is not
always true since a single spam campaign is often carried by
more one botnets.

There have been several general botnet detection algorithms
(e.g., [7, 8, 9]) that identify suspect packets and host behaviors
and take advantage of event correlation to report infected hosts
and their likely controllers. Most of these studies rely on
exhaustive deep packet inspection which can be expensive and
have significant operational overhead in large networks.

A network flow based approach to detecting botnets, given
a set of suspicious clients was proposed by Karasaridis et
al. [13]. For a set of suspicious clients (e.g., hosts found
scanning for vulnerabilities), flow records (in which the sus-
picious client’s IP address is either the source or destination
address) were obtained from multiple network links, analyzed
and compared to IRC traffic models for suspected controller
activity. This approach could be extended to uncover botnet
controllers that use other control protocols to communicate
with spam bots.

In this paper, we present an alternative approach to botnet
detection based on characteristics of spam vs. legitimate SMTP
traffic derivable from SMTP flow data and characteristics of
compromised vs. non-compromised spammers obtained from
other flow data. In our approach, we derive multivariate models
of known spammer and known legitimate SMTP client traffic
based on SMTP flows and then classify unknown SMTP
clients based on their current SMTP traffic vectors’ distance
from these models. If a known spammer or an unknown SMTP
client classified as a spammer by our spam classification
algorithm is detected, the secondary behavior of spammers

is profiled using a traffic extraction algorithm [23]. If the
host traffic profiling indicates that the spammer is engaged
in other exploits, the client is processed further to identify its
botnet controller. Potential controllers are initially identified
by applying several metrics (e.g., distance to common botnet
control models, periodicity, recurrence) to flow traffic of hosts
that interact with these compromised spammers. Subsequently,
passive DNS replication metadata [20] are analyzed for addi-
tional evidence of abnormal use of DNS to obtain access to
the suspected controllers.

III. MULTIVARIATE MODELS AND BAYESIAN
CLASSIFICATION OF SMTP CLIENTS BASED ON FLOW

DATA

A. Traffic Analysis of Spammers vs. Legitimate E-mail Clients

1) Flow Data Collection: Our analyzed data consist of
SMTP flows that are aggregate traffic records between pairs
of hosts. A flow record is a tuple that consists of the source
and destination IP (sip/dip) addresses, the protocol (e.g., TCP,
UDP), the source and destination ports (sport/dport), and other
aggregated data such as the number of packets, and bytes
transferred between the hosts and the TCP flags. In the case
of an SMTP request, the source IP address corresponds to
the SMTP client, the source port is an ephemeral port, the
destination IP address corresponds to the SMTP server, the
destination port is 25, and the protocol is TCP. In the case of
an SMTP response the sip and sport are those of the SMTP
server and the dip and dport are those of the SMTP client.

In the current context, our flow data refer to flows traversing
links between our network and other ISPs (see Figure 1).
Consequently, we define an SMTP client as the MTA in the
sender AS that initiates an SMTP connection using a local
ephemeral port. We define an SMTP server as the MTA in
the receiving AS that accepts the SMTP connection on port
25/TCP to deliver the e-mail to its final destination.
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Fig. 1. High-level SMTP traffic paths and data collection points (in red).

In order to manage spam for e-mail services on our network,
we maintain our own sets of blacklisted and whitelisted SMTP



clients. Our blacklisted SMTP clients are categorized into a
daily updated list to capture the dynamically changing spam-
mers and a less frequently updated list to capture the more
static ones. Our whitelist contains ”friendly” IP addresses that
interact regularly with our mail gateway servers for legitimate
purposes. Based on the lists that were in effect for a given
calendar date/hour, we collected SMTP traffic flows traversing
a diverse set of links for a set of known e-mail spammers and
a set of known legitimate clients.

2) Important Discriminators of SMTP Traffic: To ensure
that we are analyzing purposeful SMTP requests (as opposed
to, for example, scans to destination TCP port 25 or incom-
plete 3-way handshakes), we consider flows that contain at a
minimum the PUSH TCP flag.

The differentiation between spammers vs. legitimate SMTP
clients is illustrated in Figure 2 based on flow data collected for
113 hours, where the average hourly number of flows analyzed
was 947.2 Million (minimum=560.5M; maximum=1361.5M)
over an average number of 27 peering links. Figure 2 indicates
that for SMTP flows containing a PUSH flag, the distributions
of e-mail message size (estimated by the number of bytes
per flow (BPF)) originating from blacklisted vs. whitelisted
clients are distinguishably different. Specifically, the payload
byte sizes of SMTP request flows of the whitelisted SMTP
clients are larger and much more variable than the sizes
for blacklisted SMTP clients. Consequently, traffic models of
SMTP traffic flows can be derived to distinguish the behaviors
associated with spammers vs. legitimate SMTP clients. Sum-
mary statistics of the BPF for the two categories of SMTP
clients presented in Figure 2 are given in Table I.

Fig. 2. Boxplot distributions of SMTP traffic for blacklisted and whitelisted
clients.

TABLE I
DISTRIBUTION STATISTICS FOR WHITELISTED VS. BLACKLISTED SMTP

CLIENTS. VARIABLE b DENOTES BYTES PER FLOW (BPF)

Whitelisted Blacklisted
SMTP clients SMTP clients

Number of 3262 3388
hourly client sessions

Statistic log(b) log(σ(b)) log(b) log(σ(b))

Upper 6.60 7.20 3.78 3.72
Extreme

Q3 5.20 5.89 3.16 3.20
Q2 4.82 5.31 2.96 3.03
Q1 4.06 4.00 2.74 2.85

Lower 2.36 1.38 2.11 2.33
Extreme

B. Bayesian Classification

Consider a bivariate vector x = [x1, x2], associated with an
SMTP client’s observed traffic during a given time interval,
where x1 and x2 are calculated from the logarithm of the
mean and standard deviation of the client’s BPF data, respec-
tively. We wish to categorize this traffic vector into classes
cj , j = 1, . . . , J based on the expected traffic vector exhibited
by e-mail spammers vs. legitimate SMTP clients. A Bayesian
statistical decision C(x) = cj about the class of a data point
x is based on P (cj/x), the probability of class cj conditional
on the observation x. This probability depends on P (cj), the
probability of class cj independently of the observed data (the
prior probability), and P (x/cj), the conditional distribution
function of x, given that is coming from class cj .

In the current context, where J = 2, a decision can be made
with respect to classifying an SMTP client as e-mail spammer,
whenever

P (cS) ∗ P (x/cS)
P (cS) ∗ P (x/cS) + P (cL) ∗ P (x/cL)

> T, (1)

where cS and cL denote the spammer and legitimate classes
(i.e., c1 = cL and c2 = cS), respectively and T is a
threshold. By varying T , one can allow for less false positives
(incorrectly classifying legitimate clients as spammers) at the
expense of fewer true positives (i.e., correctly classifying
spammers) or vice versa. Since we do not have bias for either
class, we assign equal prior probabilities to the two classes
(i.e., P (cS) = P (cL)), and so we can write condition (1) of
spammer classification as:

P (x/cS)/((Px/cS) + P (x/cL)) > T. (2)

The probabilities P (x/cj) are calculated using the bivariate
normal distribution function modeled from SMTP clients of
the respective class.

IV. MULTIVARIATE TRAFFIC MODEL VALIDATION

A. Stability of Traffic Model Parameters Over Time

For a given class of SMTP client there are five parameters
that define the SMTP traffic model. These parameters are
defined in Table II. For both classes of SMTP clients, the two
traffic variables are positively correlated, with a correlation



TABLE II
TRAFFIC MODEL PARAMETERS FOR A GIVEN SMTP CLIENT CLASS

Parameter Parameter Interpretation
Notation

µX1j
, j = 1, 2 µX1j

= Ej [log Y1ij ], Y1ij :
mean (across flows) of BPF for client i in class j

µX2j
, j = 1, 2 µX2j

= Ej [log Y2ij ], Y2ij :
stddev (across flows) of BPF for client i in class j

Var(X1j) σ2
X1j

= Ej(log Y1ij − µX1j
)2

Var(X2j) σ2
X2j

= Ej(log Y2ij − µX2j
)2

Cov(X1jX2j) Ej(log Y1ij − µX1j
)(log Y2ij − µX2j

)

coefficient of 0.95 for whitelisted and 0.74 for blacklisted
SMTP clients. This implies that a multivariate normal model
that explicitly addresses dependency between variables in
terms of a covariance matrix, is well suited for the current
application.

Time series analysis of these parameter values by SMTP
client type1 indicated a periodicity effect in SMTP traffic
generated by legitimate SMTP clients. A scatter plot of traffic
model parameter values as a function of hour of day and day
of week for the two classes of SMTP clients indicated that for
legitimate SMTP clients (j = 1), both the expected (across
clients) average SMTP request flow payload bytes size (µX11)
and the expected standard deviation of the SMTP request flow
payload bytes size (µX21) are greatest at 16:00 UTC time with
the exception of Sunday. In contrast, both the variances and
covariance (i.e., Var(X11), Var(X21), Cov(X11X21)) of these
two SMTP message size characteristics are lowest at 16:00
UTC time, again with the exception of Sunday. These types of
patterns are much less pronounced for the blacklisted SMTP
clients (j = 2). This pattern is consistent with [6] in that
traditional e-mail arrivals exhibit a daily cycle and thus have
high rates during certain times of the day, in contrast to the
more homogeneous arrival rates of spam e-mails.

B. Adjusting Traffic Model Parameters Using Exponentially
Weighted Moving Average (EWMA) Smoothing

Given the existence of a periodicity effect associated with
time of day and day of week, we characterize a seasonality
cycle of one week duration corresponding to 21 successive 8-
hour time periods. We define a set of traffic model parameter
values for a given SMTP client type for each of these 21 time
periods (corresponding to a period of one week) and apply
exponentially weighted moving average (EWMA) to smooth
short-term fluctuations associated with model parameter val-
ues2. Since we did not observe any sudden fluctuations in the
parameter values, we set the smoothing parameter (i.e., the

1Each time series contained, for a given SMTP Client type, values computed
for a given traffic model parameter for 300 consecutive time periods, where
each time period corresponded to a UTC time of 0:00; 08:00 or 16:00 for a
given day of the week.

2An autoregressive model was also applied to these time series of model
parameter values and then compared with the EWMA smoothing approach.
Since the EWMA smoothing was comparable in terms of the mean squared
error and is simpler to implement, we only present the results from the EWMA
smoothing.
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Fig. 3. Scatter plots of traffic model parameter values.

weight of the current parameter value) α of EWMA to 0.5
(past parameter estimate is weighted by 1-α=0.5).

Figure 3 presents scatter plots of the traffic model parameter
values as a function of time for a period of one week based on
the EWMA filtering. Dashed lines indicate median parameter
values while solid lines indicate the 25th and 75th quartile
parameter values. For a given time of day and day of week,
for model parameters µX1j

, µX2j
, σ2

X1j
, and σ2

X2j
, the effect

of the EWMA filtering is to reduce the variation in model
parameter values (i.e., reduce the model parameter inter-
quartile range) so that the two populations of SMTP clients
are more distinguishable. Consequently, we utilize the EWMA
parameter values when evaluating the accuracy of the traffic
models in classifying SMTP clients.

C. Accuracy of Traffic Models in Classifying Blacklisted vs.
Whitelisted SMTP Clients

We applied the following four metrics to evaluate model
classification accuracy:

• P (Classify Spammer/Blacklisted SMTP client): the ratio
of correctly classified spammers to all blacklisted SMTP
clients.

• P (Classify Legitimate/Blacklisted SMTP client): the ra-
tio of blacklisted SMTP clients incorrectly classified as
legitimate to all blacklisted SMTP clients.

• P (Classify Legitimate/Whitelisted SMTP client): the ra-
tio of correctly classified legitimate SMTP clients to all
whitelisted SMTP clients.



TABLE III
EVALUATION OF SMTP TRAFFIC MODEL CLASSIFICATION ACCURACY

P (Classify P (Classify P (Classify P (Classify
T Spammer/ Legitimate/ Legitimate/ Spammer/

Blacklisted) Blacklisted) Whitelisted) Whitelisted)
0.8 0.887 0.031 0.864 0.05

0.85 0.862 0.027 0.852 0.042
0.9 0.817 0.023 0.836 0.032

0.95 0.708 0.018 0.808 0.018

• P (Classify Spammer/Whitelisted SMTP client): the ra-
tio of whitelisted SMTP clients incorrectly classified as
spammers to all whitelisted SMTP clients

The median values for each of these four metrics are
given in Table III for different threshold values, T . Table
III demonstrates that we can reduce the false positives by
increasing the threshold value T , though at the expense of
reduced true positives.

V. DETECTION OF SPAM BOT CONTROLLERS

The proliferation of botnets is driven to a large extent by
their capability to automate large spam campaigns. Since a
portion of a botnet is expected to be used for spamming, we
can use our spam host detection algorithm to uncover possible
spam bots and the botnets that they belong to. In this section,
we demonstrate the application of our spammer classification
algorithm in identifying spam bots and their controllers.

A. Identifying Compromised E-mail Spammers by Host Traffic
Profiling

1) Host Traffic Profiling (HTP) Description: We applied an
entropy-based significant traffic component extraction proce-
dure to flows collected for detected spammers [23]. When ex-
tracting a set of significant local and remote ports for any given
spamming host, we assume that the probability distribution of
the target variables obeys a power law so that only relatively
few values have significantly larger probabilities while the
remaining values are close to being uniformly distributed. The
procedure is first applied to extract the set of significant local
ports and then the set of significant remote ports. As a metric
of significance of a discrete random variable X , we use its
normalized entropy which is defined as

Hn(X) = −
∑

i p(xi) log(p(xi))
log(min(Nx,m))

, (3)

where p(xi) denotes the probability of discrete random vari-
able xi, m is the sample size and Nx is the number of all
possible values of the discrete random variable. To interpret the
significant traffic components of a spamming host, we analyze
the set of flows that share the same port and compute Hn for
each of the two remaining free dimensions (i.e., remote hosts
and remote ports, or remote hosts and local ports).

An example of a host traffic profile computed for a
whitelisted SMTP client is given in Table IV3. The profile

3For brevity in this example, we omitted from the table remote hosts (since
none were significant) and traffic statistics.

TABLE IV
EXAMPLE HOST TRAFFIC PROFILE FOR A WHITELISTED SMTP CLIENT

Traffic Entropy of Significant Entropy Interpretation
Component Local Ports Local Ports of Remote

Hosts
Remote 0.972 N/A 0.622 e-mail client

Port 25/tcp
Remote 0 UDP-53 0.788 Host

Port 53/udp Interacting
via local

port 53/udp
with remote
port 53/udp

indicates that the host initiates SMTP interactions with remote
hosts (i.e., on remote TCP port 25) and that it also initiates
DNS interactions with remote hosts (i.e., on remote UDP port
53) using local UDP port 53.

2) Host Traffic Profiles of Categories of E-mail Clients:
Analysis of the host traffic profiles constructed for a set of
known whitelisted clients and a set of known blacklisted
clients observed for 21 hourly time periods indicated that,
in addition to mail-related (tcp/25, tcp/110) services, these
well-known e-mail clients exhibited or utilized DNS-related
services (access to udp/53 and tcp/53), and issued or received
ICMP traffic with message types other than ”port unreach-
able”. Consequently, we consider DNS-related services and
non-port unreachable ICMP traffic, as possible traffic that a
non-compromised SMTP client might be receiving or sending
(i.e., ”mail-related”). In contrast, all other services and port un-
reachable ICMP traffic are deemed ”non-mail-related”. These
non-mail host traffic components include scanning activities
(for malware propagation), binary downloading (for malware
installs/updates), DoS attacks, other exploits, and command
and control operations.

Table V presents the number of (known) blacklisted vs.
(known) whitelisted e-mail clients with host traffic profiles
containing non-mail-related traffic vs. the number of e-mail
clients whose host traffic profiles contained mail-related traffic
only. To analyze the dependency of non-mail-related traffic
on the type of SMTP client, we performed an odds ratio
test [2]. In the current context, the odds ratio represents the
odds of non-mail-related traffic profile (signifying a likely
compromised machine) occurring for one category of SMTP
clients vs. the other. An odds ratio of 1 implies that the
”possibly compromised” traffic behavior is independent of the
SMTP client type.

The odds ratio for blacklisted vs. whitelisted e-mail clients
in Table V is 5.46 confirming that whitelisted SMTP clients
represent well-known dedicated e-mail hosts that are less likely
to be involved in non-mail-related activities. Consequently,
we can utilize host traffic profiling to classify detected e-mail
spam hosts as compromised and use them as seeds for possible
botnet activity.



TABLE V
NUMBER OF E-MAIL CLIENT SESSIONS BY CLIENT TYPE AND HOST

TRAFFIC PROFILE (HTP) TYPE

SMTP Client Hosts having HTP Hosts having HTP
Class with non-mail with mail

components components
Blacklisted 1108 2157
Whitelisted 262 2786

B. Uncovering Botnet Controllers from Compromised Spam
Hosts

Given that malware infected spam hosts typically show a
network behavior markedly different from a regular SMTP
gateway, we exploit this property to investigate if they are
part of a botnet and identify their controllers. We do this by
analyzing the flow records of the suspicious spam hosts and
the DNS metadata of the suspected controllers using a DNS
passive replication database. A DNS analysis of the suspected
controllers provides additional insight and confidence for
potentially malicious activity. This can be done on-the-wire
in near real-time without the need to collect and analyze large
bodies of spam messages or the content of the communication
with every suspected controller.

We direct our attention here to the most common botnet
control mechanisms where there are distinctive controllers,
which can be centralized or distributed, using standard ap-
plication protocols such as HTTP, HTTPS and IRC. Note that
even though these protocols are used to build general model
frameworks of flow traffic, they are used in combination with
other metrics that can unveil customized control mechanisms
by giving higher tolerance to the distance metric, as we will
discuss. To identify potential controllers, we applied a two-
stage flow-based approach [13], which is outlined as follows:

Stage A:
1) For a given time period (e.g., 1 hour), obtain a set of

blacklisted SMTP clients (from a daily updated upstream
database) and a set of SMTP clients classified by the
spam detection algorithm as spam hosts.

2) For each host identified above, obtain flow records from
multiple network links where the IP address is either the
source or destination address in the flow record.

3) Apply host traffic profiling to these flow records to
identify malware-infected spam hosts

4) Process flow records associated with malware-infected
spam hosts to identify flows representing communication
to a possible controller and summarize these interactions
as candidate controller conversations containing client
(i.e., infected spam host) and server (i.e., controller) IPs,
server port, number of flows, packets, bytes exchanged
and the start and end time of the conversation.

Stage B:
1) Aggregate candidate controller conversations (optionally

for longer periods than the flow summarization period,
e.g., 1 day), rank server addresses/ports by the number
of suspicious clients and calculate distance of these

candidate controller conversations to the traffic model.
The models consist of quartiles of flows per client,
number of packets and number of bytes and are defined
for typical IRC, HTTP and HTTPS control traffic4 for
both directions of a connection (requests and responses).
For a suspect server/port pair that satisfies a minimum
threshold of clients and has small distance relative to a
model we analyze the flows in more detail and calculate
the following additional components: i) number of quasi-
periodic clients, and ii) number of zero-entropy clients.
Quasi-periodic clients are clients whose flow records
have approximately periodic interarrival times. Zero-
entropy clients are clients whose flows with suspected
controllers have repetitive patterns of packet and byte
counts and flags for a given protocol.

2) Perform DNS metadata analysis for suspected con-
trollers. The DNS metadata contain known mappings
between a fully-qualified domain name, the resolved IP
address, a count of responses with the same resolution,
and the start and end time of all known resolutions
of the same pair domain–address. The DNS analysis
of the IP address of the suspected controller provides
the following output: i) count of all domains resolved
to the address historically, ii) count of domains that
resolved to the address recently (e.g., last 1 day), and
iii) number of transient domains related to the suspect
address. Transient domains are domains that migrate
frequently between diverse provider addresses, indicat-
ing an evasion effort. To determine the transiency of a
domain we consider the average time overlap between
addresses for the same domain and the diversity of the
addresses in terms of AS numbers and IP registration
data.

3) Assign a botnet controller confidence score to each
suspected controller–port pair based on factors (with in-
creasing weight) such as the number of suspicious spam
host clients connected, number of quasi-periodic clients,
number of zero-entropy clients, and number of transient
domains. The score is also increased if there were no
domains ever mapped to the suspected controller (i.e.,
accessed only by its address). The overall score is a
linear weighted function of these factors. The weights
are adjusted for different average volumes of suspicious
clients, flow records and time interval of summary record
aggregation. Alarm records are generated whenever the
confidence score exceeds a threshold (e.g., 100).

In the following, we give some examples of controllers
detected using the approach described above and explain the
different metrics that contributed to the confidence score.

1) Discussion of results for controller detection: Figure
4 gives an example of a suspected controller record. This
particular record identifies a host5 that is a controller of
the Ozdok botnet that is mainly responsible for conducting

4Models can also be derived for known botnets such as Waledac.
5All IP addresses in this paper have been anonymized.



#Server_IP|Server_Port|Number_of_Suspicious_Clients|
Port_Euclidean_Distance|Number_of_Suspicious_Periodic_
Clients|0-EntropyClients|Number_of_domains|Number_of_
recent_domains|Number_of_Transient_domains|Aggregate_Score

10.232.229.114|80|3|78.80|1|3|4|1|0|115
Date/Hr Timestamp: 2010012504
Recent domain used=selementusaks.org
Total number of domains that have mapped to this IP=4
Number of domains that have recently mapped to this IP=1
Examining domain selementusaks.org
Number of historical IPs=0
Domain has a small number of historical IPs (0 <2)

Fig. 4. Alarm record for a suspected controller of the Ozdok spam botnet.
One of the compromised spam hosts shows a quasi-periodic behavior while
three of the spamming hosts show a recurrent behavior towards the controller.

#Server_IP|Server_Port|Number_of_Suspicious_Clients|
Port_Euclidean_Distance|Number_of_Suspicious_Periodic_
Clients|0-EntropyClients|Number_of_domains|Number_of_
recent_domains|Number_of_Transient_domains|Aggregate_Score

10.19.191.55|443|2|36.41|0|1|0|0|0|85
Date/Hr Timestamp: 2009120701
Total number of domains that have mapped to this IP=0
Number of domains that have recently mapped to this IP=0
There are no domains associated currently with this
IP address

Fig. 5. Alarm record for a suspected controller that is part of the Cutwail
spam botnet. The controller is accessed directly by its IP address since there
were no records of domains resolved to its address.

large spam campaigns. The record indicates the IP address
(anonymized) and the port of a suspect controller. Metrics
of interest in this case are the number of quasi-periodic
clients and the number of zero-entropy clients. Notice that the
record was based only on 3 suspicious clients (compromised
spammers). Of these, 1 exhibited periodic patterns and all 3 of
them were zero-entropy, i.e., they had repetitive bytes, packets
and flags in their flow records. We found that the suspect IP
address was resolved historically to by 4 different domains
but only 1 of them has been used recently. The currently used
domain is not transient and it has no other historical addresses
other than the currently used one.

Figure 5 illustrates an example where the suspected con-
troller operates on port 443/tcp and is one of the distributed
controllers for the botnet Cutwail. In this case, the com-
mands are communicated via HTTPS. There are two interest-
ing characteristics in the report: a) one of the two suspicious
clients has zero-entropy, and b) the suspected controller IP
address was never associated to any domain name.

In the example of Figure 6, the distinctive feature is that
there are 2 transient domains associated with the suspected
botnet controller. Further investigation indicated that the sus-
pected controller was commanding machines controlled by
the Zeus botnet responsible for leaking internal corporate
data. As we see, there was no overlap in time between the
different addresses used for one of the transient domains. Also,
the average IP distance had the maximum possible value of
1, which means that all addresses had different /24 prefixes,
address registration data and AS numbers.

2) Discussion of false positives in controller detection and
possible evasion techniques: Using flow and DNS metadata
we are able to detect automatically IRC controllers in near

10.51.196.242|80|2|45.36|0|0|6064|63|2|110
Date/Hr Timestamp: 2010020304
Recent domain used=lambert.66ghz.com
Recent domain used=zal.te.ua,
...
Examining domain lambert.66ghz.com
Number of historical IPs=0
Domain has a small number of historical IPs (0 <2)
...
Examining domain zal.te.ua
Number of historical IPs=2
Average Time Overlap between IPs=0.000
Average IP distance=1.000
Domain zal.te.ua appears to be transient
#Domain|IPaddress|NumResponses|NumDomainstoIP|
StartTime|EndTime|Lifespan(Days)
10.51.196.242|4|6064|20091112@23:25:21|20100129@23:43:01|78
10.43.65.6|5|307|20090113@15:24:39|20090510@15:41:05|117
10.32.73.138|4|233|20081027@07:41:07|20081127@15:53:43|31.3

Fig. 6. Alarm record for a controller of the Zeus botnet. The address of
the controller is linked to two domains that appear to be transient.

real-time with virtually no false positives. DNS metadata
analysis improves the detection precision from about 98%
[13] to 100%. Normal control IRC traffic can be accurately
modeled using flow data, which makes the distance calculation
a good predictor of control in combination with the other
metrics we use.

Botnet detection where controllers use HTTP(S) presents a
bigger challenge if the analysis is based solely on flow records.
The main reasons are: a) the communication between the bot
and its controllers can be highly variable due to being coded
in many different ways by the different malware authors, b)
bots often communicate with legitimate sites for a variety of
reasons, e.g., to check for the latest news (to use for example in
spam email), to get accurate time and timezone, to check for
host connectivity, etc. Many times this behavior has similar
characteristics as control traffic, c) HTTP(S) traffic is much
more common and therefore control traffic can be hidden with
more ease in legitimate traffic, and d) control typically is more
distributed and therefore we detect smaller sets of suspicious
clients connecting to questionable servers.

However, we found that supplemental analysis of the DNS
metadata adds significant confidence to the detection. For
example, connections to suspected controller IPs that do not
have any history of domain names pointing to them or that
point to consumer dynamic pool domains, short lived or tran-
sient domains, lead most of the time to malware hub servers
validated by our internal analysis or external reports. Our
approach has detected automatically distributed controllers
for some of the largest spam HTTP/HTTPS botnets such as
Cutwail, Ozdok, Zeus and Waledac.

Security threats and countermeasures are in an accelerating
arms race. New technologies are developed to detect today’s
threats but many new threats are able to evade many AV
software packages and IDSs. The detection techniques we
discussed have been proven effective in detecting C&C points
of fast evolving malware propagating via a large scale network.
However, we can envision an increased sophistication of the
malware authors that can possibly challenge our assumptions
and circumvent some of our filters. For example, spam host de-



tection can be challenged by spammers using legitimate SMTP
servers (e.g., via Web mail accounts) to launder reputation and
traffic statistics. This requires a significant amount of effort
from spammers in setting up and authenticating to accounts
on legitimate mail services which does not scale well and
can be easily shut down by watchful system administrators.
Alternatively, spammers can form spam messages in a way
that they match the size statistics of normal email, i.e., have
higher coefficient of variation and higher mean sizes. However,
if the perpetrating hosts are compromised and part of a botnet,
then it would be difficult to hide other traffic components that
do not match the behavior of a normal SMTP gateway, i.e.,
they would need open active ports, locally or remotely, to
receive commands or software updates, or they would exhibit
background traffic related to activities of the legitimate users.
The availability of flow records other than those corresponding
to SMTP traffic, allow us to identify such difficult to hide
traffic components from hosts that are involved in malicious
activities.

Malware authors can also change the protocols and the way
they use them to evade detection of controllers. Botnet control
using for example HTTP already presents challenges due to
the volume of normal HTTP traffic and the variability in how
the protocol is used to communicate commands between the
bots and the server. This necessitates the use of new traffic
models. Also the distance to a model can only be used as
a guideline and should not be a significant contributor to an
overall confidence score. As we saw in the examples we gave,
other metrics, different than the model distance, become more
critical (e.g., DNS analysis) in identifying controllers with
higher confidence.

VI. CONCLUSION

In this paper, we have presented a comprehensive approach
for detecting spam bots and their respective controllers us-
ing flow data and DNS metadata. Our approach consists of
establishing SMTP traffic models of legitimate vs. spammer
SMTP clients and then classifying unknown SMTP clients
using a Bayesian approach. We demonstrate that the likelihood
of observing non-mail-related traffic behavior (indicative of
compromised activities) among known spammers is much
higher than for known legitimate clients.

Furthermore, we show how to further analyze the flow data
of compromised spammers to find if they are part of a botnet
and identify their likely C&C servers. This approach can be
performed in near real-time and is automated. It is scalable
since it does not depend on large number of compromised
spammers to find likely controllers and does not depend on
collecting and training on large sets of email spam.
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