Striping without Sacrifices:
Maintaining POSIX Semantics
In a Parallel File System

s’ Jan Stender
=27 Bjorn Kolbeck
7/ITTN\

/223 zuse Institute Berlin

Outline XTREEMFS 550

 [ntroduction

* Problem Description
e Striping Protocol

« Experimental Results

e Summary

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 2

- XireemOS A
T
s Qb

Introduction XTREEMFES -:::‘:.5-}

« Striping increases the performance of file systems

- a single file is split up in Process
chunks scattered across l :
write 1MB to a file

multiple storage resources

- chunks can be accessed in e
parallel —
client splits file into chunks
- a single file can be accessed v] v
with the accumulated Chunk1 | |Chunk2 | |Chunk3 | |Chunk4

256kB 256kB 256kB 256kB

performance of multiple

storage resources ﬁi?gtlieqnfessﬂm"el
« Parallel file systems have
distributed storage

re S O U rC e S storage servers

- chunks reside on different
storage servers

- e G A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 3

Introduction XTREEM

* General-purpose file systems are expected to be
POSIX-compliant

- well-defined interfaces and behavior

- no specific API, applications run w/o being modified or re-
linked

- POSIX-compliant file systems can be used by any application

 POSIX defines how read and write operations behave
In certain corner cases:

_ Ilgapsll
- reading beyond EOF

! ¥ Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 4
- X.’feemo_s 5
el

Introduction XTREEMFS S5

 Gaps
- writes at an offset beyond EOF implicitly creates a gap, i.e. a

region of missing data

- readinag bvtes in a aa Process A writes 256 bytes
must rgtu};n bina rygzeFl)‘os at offset O and offset 512

» EOF l i
e B C

buffer (less bytes than —

requested) "gap" from
offset 256-511

- Xtreem 0S © Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 5

“S88s

Problem Description XTREEMFS 357

» Problem: How to distinguish

between a gap and the EOF in a

parallel file system? . /

chcnt splits file into chunks

- process A creates new file by writing g 1
Chunk l and 3 Chunl_(l C‘hun!c.?
- Chunk 2 iS nOt eXpliCitIy fi”ed With c]i(‘entsends\p_arallel
data o
=
Process B I
l reads 256k at offset 256k N ‘
Client - process B requests missing chunk 2
requests matching .
Chunk 2 - storage server 2 must decide whether to
— respond with an empty buffer (EOF) or a
2956k \ — zero-padded buffer (gap)
E 2 E 3
1 2 3 4

SlD]'{_lgE SErvers

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 6

Problem Description XTREEMFS S

« Basic idea: provide for a consistent view on the file
size among all storage servers

 However, ...

- synchronizing each append-write operation across all
storage servers is too expensive

- a central server that stores the file size would be a
bottleneck

- X.freemO_S A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 7
Tl S

Striping Protocol XTREEM

« Solution: decentralized, loosely-synchronized
approach

- storage servers disseminate and keep track of hints about
the current file size (i.e. the globally last chunk number)

- if a requested chunk is missing, these hints are used to
decide between a gap and an EOF

- iIf no decision is possible, Chunk 6
the file size is explicitly Chunk 1 | [Chunk2 | [Chunk3 | [Chunk4

synchronized by fetching — >

the last chunk number

from all storage servers 0 &9 &=
| 2 3 4

- Implicit assumption:
files grow monotonously jastiseieik

largest file size
hint seen locally: 6 chunk 5 refers to a gap.

1 -
Server 1 knows that the missing

e A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 : Page 8

Striping Protocol XTREEMFS

« Write

receive chunk
number

write chunk
locally

chunk no.
> |last known
one?

chunk no.
> |last known
one?

send new chunk
number to remote
servers

replace largest
known chunk no.
with received one

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 9

soSSs
.. -, :E“.‘g‘\.
[B3
SS3din
® - °

XTREEMFS 555

Striping Protocol
start
e Read v

read chunk locally

YES return chunk

chunk present?

last known
chunk number
> requested
one?

yes % return gap '

return gap

fetch last known chunk
numbers from all remote

servers, replace local one
with greatest if necessary

last known
chunk number
> requested
one?

return EOF

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 10

Striping Protocol XTREEMFS __tj.

e Jruncate

- problem: violates our monotony assumption on the file size
- solution: "truncate epochs"

- file size hints consist of chunk number + epoch number

- a designated server is responsible for truncate operations

« it increments the epoch number

« it synchronously updates the file size + epoch on all remote servers

- aserver receiving a file Process A
size hint updates its local Chyud6

chunk and epoch number if Chunk 1 | | Chunk 2

Chunk 3 ' a

) truncate to
» the received epoch 3 chunks

number is greater than
the local one

« both epoch numbers are equal
and the received chunk number
is greater than the local chunk | .
argest file size
num be r hint seen locally: (3,2)

last local chunk: 1 frucate Call,

ew epoch=

-) 6 A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 11

Experimental Results XTREEMFS £
 reads and append writes ——
scale linearly so =
700 }/'
« low latency for reading gaps 00 -
and data, as no file size o -

synchronization is necessary 00

thorughput in MB/s

N B O R A
6 8 10 12 14 16 18 20 22 24 26 28
5 7 9 11 13 15 17 19 21 23 25 27 29

* higher latency for reading
beyond the EOF’ due to striping width/number of OSDs
file size synchronization N

700

" 650)/'
= 600
22.5 @ {
%) 1 0SD S 550 P
S 20.0 [5 0SDs c 500 /
c ’ 115 OSDs +— 450 o
c 17.5 W 25 0SDs S_ 400 =
o < 350 o
2 150 > 300 va
o o 250
3 125 S 200 —x
— 150
»n 10.0 100 f
¢ v
=) 7.5 50
o : 0
0] e e s e
5.0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
55 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0.0 7II:.T-:I:._FL striping width/number of OSDs

read gap read data read
beyond

- X.freemO_S A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 12

Summar XTREEMFS 355

The suggested protocol exhibits a POSIX-compliant
behavior while ensuring scalability

Frequent operations are fast

- append and random writes
- reads in file bounds

The protocol does not enforce locking

- parallel access is possible by multiple clients

The protocol inherently supports sparse files

! ¥ Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 13
- X.’feemo_s 5
el

Thank you! XTREEMFS 555

Questions?

Funded by the European Commision's FP6 programme
under contract #FP6-033576

om0S A Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 14

XtreemFS - Architecture

metadata .
Metadata Server client
N .
README.txt metadata operations, U
: . ser User User
1365 bytes object locations, Process || Process || Process
/\/\/\ authorization
NN (e.g. open, rename)
I Linux VFS
10101110010101001
100010010011 10010
1 FUSE
4 } { ; Access Layer (AL)
file replicd’ file repli¥a
{non-striped) (striped)
et chee! ! el
y e U [(v
object D22
fol el NeljNel
/ olfolle Mo \
0SDs
parallel read/write |

Bjorn Kolbeck, Jan Stender - LASCO '08, Boston, 23-JUN-2008 - Page 15
ool W

