
Experiences in Developing
Lightweight System Software
for Massively Parallel Systems

Barney Maccabe
Professor, Computer Science
University of New Mexico

June 23, 2008 Boston, MAUSENIX LASCO Workshop

1

Simplicity

Butler Lampson, “Hints for Computer System Design,” IEEE Software,
vol. 1, no. 1, January 1984.

Make it fast, rather than general or powerful

Don't hide power

Leave it to the client

“Perfection is reached, not when there is no longer anything to add, but
when there is no longer anything to take away.”
A. Saint-Exupery

2

MPP Operating Systems

3

1992 1993 1994 1995 1997 1998 1999 20001991 2001 20021996 2003 2004

JRTOS

real-time

Config

application

driven

LWK

direct comparison

2005

Puma/Cougar

levels of trust

SUNMOS

message passing

Unified

features

Cplant (Portals)

commodity

Catamount

re-engineering of Puma

Intel Paragon

Intel ASCI/Red

Cray Red Storm

Cplant

4

MPP OS Research

5

Partitioning for Specialization

Red
Storm

Functional Partitioning

Service nodes

authentication and authorization

job launch, job control, and accounting

Compute nodes

memory, processor, communication

trusted compute kernel passes user id to file system

isolation through communication controls

I/O nodes

storage and external communication

6

QK – mechanism
Quintessential Kernel
provides communication and address
spaces
fixed size–rest to PCT
loads PCT

PCT – policy
Process Control Thread
trusted agent on node
application load
task scheduling

Applications – work

Compute Node Structure

Compute Node

Q-Kernel

PCT TaskTaskTaskTask

7

Trust Structure

Q-Kernel

PCT

Server

Application

Hardware

Q-Kernel

PCT

Application

Server

Trusted
(OS)

Not trusted
(runtime)

8

Is it good?

It’s not bad...

Intel Paragon 1993: 1,842
compute nodes

#1 6/1994–11/1994

Intel ASCI/Red 1997: 9,000
processors

First Teraflop system

#1 6/1997–11/2000

40 hours MTBI

Red Storm 2005 (Cray XT3);
10,000 processors

Other things are bad...

OSF-1/AD was a failure on the
Paragon

OS noise when using full-featured
kernels

Livermore and LANL experiences

9

Historical problem: OS
researchers only got to study
broken systems at scale

Compare to Blue Gene/L
BG/L

I/O nodes (servers)

CNK trampoline

Catamount

QK = Hypervisor

PCT = Dom 0

I/O node

CNK

App

CNK

App

Hardware

Q-Kernel
P

C
T

Ta
sk

Ta
sk

Ta
sk

Hardware

10

OS Noise

11

OS Noise

12

OS interference: OS uses resources that the application could have
used to do things not directly related to what the application is doing

Does not include things like handling TLB misses

May include message handling (if the application is not waiting)

OS Noise (Jitter): the variation in OS interference

Fixed work (selfish): measure variation in time to complete

Fixed time (FTQ): measure variation in amount of work completed

e.g., garbage collection–noise is usually there to do good things

June 18, 2007 Cray Inc./FastOS07 Slide 8

FTQ on Catamount

FTQ (Fixed Time Quantum)

FTQ

Fixed Time Quantum

Measure application
work in fixed time
quantum

Matt Sottile, LANL
(now at Google)

Source: Larry Kaplan Cray, Inc.

QK Quantum
PCT Quantum

13

FTQ on Linux

14

June 18, 2007 Cray Inc./FastOS07 Slide 9

FTQ on LinuxSource: Larry Kaplan Cray, Inc.

FTQ on ASC PurpleTypical FTQ Output From Purple
The Day After Purple’s Firmware

Upgrade…

Typical FTQ

After Firmware upgrade
(VM is using cycles)

Source: Terry Jones, LLNL

15

What’s the big deal?

16

p0 p1 p4 p5 p6p3p2

noise

0 2000 4000 6000 8000 10000 12000 14000 16000

nodes

0

20

40

60

80

100

120

140

c
o

lle
c
ti
v
e

 t
im

e
probability = 1%; service time = 20 us

probabilty = 10%; service time = 10 us

probability = 5%; service time = 10 us

200 400 600 800 1000

nodes

0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty
 o

f
e

n
c
o

u
n

te
ri
n

g
 n

o
is

e

y=1-.99^x

Noise does matter

17

High Frequency, Low Duration
2.5% total noise injected

2000 4000 6000 8000 10000

nodes

0

5

10

15

20

25

%
 s

lo
w

d
o

w
n

POP

Sage

CTH

2500 Hz, 25 usec

Source: Kurt Ferreira, UNM

0 2000 4000 6000 8000 10000 12000

nodes

0

1

2

3

4

5

%
 s

lo
w

d
o

w
n

Sage

CTH

2500 Hz, 25 usec

0 500 1000 1500 2000 2500 3000

nodes

0

20

40

60

%
 s

lo
w

d
o

w
n

Sage

CTH

10 Hz; 2500 usec

0 500 1000 1500 2000 2500 3000

nodes

0

500

1000

1500

%
 s

lo
w

d
o

w
n

POP

Sage

CTH

10 Hz; 2500 usec

Noise does matter–really

18

Low Frequency, High Duration
2.5% total noise injected

Source: Kurt Ferreira, UNM

Dealing with noise

Minimize noise
Lots of short noise is better than small amounts of long noise
Make “noisy” services optional

Block synchronous systems services
synchronizing tens of thousands of nodes is hard

Hardware support
for noisy operations (e.g., global clock)
for operations affected by noise (e.g., collective offload)

Develop noise tolerant algorithmic approaches
equivalent to latency tolerant and fault oblivious approaches
(i.e., accept that noise will eventually dominate all other things)

Define how applications can be noise tolerant (e.g., avoid ALLREDUCE)

19

Linux

20

Linux

20

What was the question?

The 800lb Penguin

Disk

gcc
glibc

MPI

Rob Pike, “Systems Software Research is Irrelevant,” 2/2000

21

“Linux’s cleverness is not in the software,
but in the development model”

ssh
telnet dns

emacs

email

rlogin

TCP/IP

Network

I/O BusI/O DeviceI/O Device

VideoVideoVideoVideo
DiskDiskDisk

NetworkNetworkNetwork

I/O BusI/O Bus

Linux

I/O Device

The 800lb Penguin

Disk

gcc
glibc

MPI

Rob Pike, “Systems Software Research is Irrelevant,” 2/2000

21

“Linux’s cleverness is not in the software,
but in the development model”

TCP/IP

Network

I/O BusI/O DeviceI/O Device

VideoVideoVideoVideo
DiskDiskDisk

NetworkNetworkNetwork

I/O BusI/O Bus

Linux

I/O Device

on a diet

The 800lb Penguin

Disk

gcc
glibc

MPI

Rob Pike, “Systems Software Research is Irrelevant,” 2/2000

21

“Linux’s cleverness is not in the software,
but in the development model”

TCP/IP

Network

I/O Bus

Linux

I/O Device

on a diet

The 800lb Penguin

Disk

gcc
glibc

MPI

Rob Pike, “Systems Software Research is Irrelevant,” 2/2000

21

no “broken” hardware
limited number of devices
minimal services
e.g., CNL, ZeptoOS

“Linux’s cleverness is not in the software,
but in the development model”

TCP/IP

Network

I/O Bus

Linux

I/O Device

on a diet

Building Compute Node Linux

June 18, 2007 Cray Inc./FastOS07 Slide 9

FTQ on Linux

June 18, 2007 Cray Inc./FastOS07 Slide 10

FTQ evolving on CNL

Source: Larry Kaplan Cray, Inc.

•BusyBox (embedded)
•no remote login
•add “capacity” features as needed by application

•Libraries
•NFS, LDAP

Complex interactions in
changing the quantum

22

CTH on Catamount and CNL

1 1x101 1x102 1x103 1x104

Nodes

0

5

10

15

T
im

e
 /

 T
im

e
s
te

p
 (

s
e

c
o

n
d

s
)

CNL

LWK

CTH scaling study

Shaped charge

1.75M cells / process

23

Caution: Preliminary results

Source: Courtenay Vaughan, Sandia

Partisn on Catamount and CNL

1 1x101 1x102 1x103 1x104

Nodes

50

100

150

200

T
im

e
 (

s
e

c
o

n
d

s
)

CNL

LWK

Partisn scaling study

SN problem

24x24x24 cells / process

Source: Courtenay Vaughan, Sandia

213s

143s

50% increase
on 8096 nodes

24

Caution: Preliminary results

Keeping up with Linux

25

1000 2000 3000 4000

Days since release of 1.0.0 (14 March 1994)

0

1

2

3

4

5

6

7

L
in

e
s
 o

f
c
o
d
e
 i
n
 t
h
e
 L

in
u
x
 k

e
rn

e
l
(m

ill
io

n
s
)

2.6 Kernels

2.4 Kernels

2.2 Kernels

2.0 Kernels

1.2 Kernels

Data from Oded Koren

Source: Oded Koren

Source code is small enough that developers can keep it in their head
Catmount is <100,000 lines of code

Early example: dual processors on ASCI/Red
Heater mode

Message co-processor mode
designed/expected mode of use

Compute co-processor mode
aka “stunt mode”

Virtual node mode
6 man-month effort to implement

became the standard mode

Catamount is Nimble

26

P0 P1 Memory

Network
FIFOs

Adding Multicore Support

SMARTMAP (Brightwell, Pedretti, and Hudson)

Map every core’s memory view into every other core’s memory map

Almost threads, almost processes

modified 20 lines of kernel code

in-line function (3 lines of code) to access another core’s memory

Modified Open MPI

Byte Transport Layer (BTL), requires two copies

Message Transport Layer (MTL), message matching in Portals

Less than a man-month to implement

27

SMARTMAP Performance

28

1 10 100 1000 10000 100000 1x106

Message Size (bytes)

1

10

100

1000

P
in

g
 P

o
n
g
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

BTL Generic Portals (interrupt, 2 copies)

MTL Generic Portals (interrupt 1 copy)

BTL SMARTMAP (2 copies)

MTL SMARTMAP (1 copy)

Source: Ron Brightwell, Sandia

Why Linux Why not

29

Community

Easier to hire Linux specialists

Lots of eyes to find solutions, and
others care

Environment

Performance tools

Development tools (compilers)

Libraries

Highlander: there will be one

One is the loneliest number...
diversity is a good thing

Linux is a moving target

hard to get changes into Linux

HPC is not the goal

Shrinking Linux eliminates parts of
the environment

when does it stop being Linux?

Catamount as a virtualization layer

Lightweight Storage Systems

30

Basic Idea

Apply lightweight design philosophy to storage systems

Enforce access control: authentication, capabilities with revocation

Enable consistency: lightweight transactions

Expose full power of the storage resources to applications

Applications manage bandwidth to storage

“Off line” meta data updates – “Meta bots”

31

File/Object Creates

32

Lustre File Creates LWFS Object Creates

Note different scales for y axis

0 10 20 30 40 50 60

Number of Clients

0

200

400

600

800

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

16 I/O Servers

8 I/O Servers

4 I/O Servers

2 I/O Servers

0 10 20 30 40 50 60

Number of Clients

0

10000

20000

30000

40000

50000

60000

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

16 I/O Servers

8 I/O Servers

4 I/O Servers

2 I/O Servers

1 I/O Server

Source: Ron Oldfield, Sandia

Checkpoints

1. Initiate a lightweight transaction on node 0
Broadcast transaction id to all nodes

2. Each node creates a unique data object & dumps local data
parallelism only limited by disks
no metadata, no consistency, no coherency
data objects are transient

3. All nodes send their data object id to node 0
4. Node zero builds an “index object” and commits the transaction

two phase commit with the storage servers
data objects and index object are permanent
could be done “off line” by a meta-bot

33

Write Throughput

34

0 10 20 30 40 50 60

Number of Clients

0

200

400

600

800

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

16 I/O Servers

8 I/O Servers

4 I/O Servers

2 I/O Servers

1 I/O Server

0 10 20 30 40 50 60

Number of Clients

0

200

400

600

800

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

16 I/O Servers

8 I/O Servers

4 I/O Servers

2 I/O Servers

Lustre write throughput
file/process

LWFS write throughput
object/process

Source: Ron Oldfield, Sandia

A final story

Many-to-one operations are problematic at scale

Cannot reserve buffer space on compute nodes for 10,000 to 1

Catamount perspective–it’s a protocol failure, fix the application!

Upper levels are responsible for flow control

Catamount happily drops messages–failing sooner rather than later is better

BG/L–the customer is right

Protect applications from themselves

Flow control is fundamental, even if it handicaps well written applications

35

The Design Space

Enable

Good

Prevent

Bad

Enable
Good
Things

Prevent Bad
Things

36

The Design Space

Enable

Good

Prevent

Bad

Enable
Good
Things

Prevent Bad
Things

36

The Design Space

Enable

Good

Prevent

Bad

Enable
Good
Things

Prevent Bad
Things

36

Thanks

UNM Scalable Systems Lab

Patrick Bridges, Patrick Widener, Kurt Ferreira

Sandia National Labs

Ron Brightwell, Ron Oldfield, Rolf Riesen, Lee Ward, Sue Kelly

“Fools ignore complexity; pragmatists suffer it; experts avoid it; geniuses
remove it.”
Alan J. Perlis

37

