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Simplicity

Butler Lampson, “Hints for Computer System Design,” IEEE Software, 
vol. 1, no. 1, January 1984.

Make it fast, rather than general or powerful

Don't hide power

Leave it to the client

“Perfection is reached, not when there is no longer anything to add, but 
when there is no longer anything to take away.” 
A. Saint-Exupery
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MPP Operating Systems
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Partitioning for Specialization

Red 
Storm



Functional Partitioning

Service nodes

authentication and authorization

job launch, job control, and accounting

Compute nodes

memory, processor, communication

trusted compute kernel passes user id to file system

isolation through communication controls

I/O nodes

storage and external communication
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QK – mechanism
Quintessential Kernel
provides communication and address 
spaces
fixed size–rest to PCT
loads PCT

PCT – policy
Process Control Thread
trusted agent on node
application load
task scheduling

Applications – work

Compute Node Structure

Compute Node

Q-Kernel

PCT TaskTaskTaskTask
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Is it good?

It’s not bad...

Intel Paragon 1993:  1,842 
compute nodes 

#1 6/1994–11/1994

Intel ASCI/Red 1997:  9,000 
processors

First Teraflop system

#1 6/1997–11/2000

40 hours MTBI

Red Storm 2005 (Cray XT3); 
10,000 processors

Other things are bad...

OSF-1/AD was a failure on the 
Paragon

OS noise when using full-featured 
kernels

Livermore and LANL experiences
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Historical problem: OS 
researchers only got to study 
broken systems at scale



Compare to Blue Gene/L
BG/L

I/O nodes (servers)
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Catamount
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OS Noise
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OS Noise
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OS interference:  OS uses resources that the application could have 
used to do things not directly related to what the application is doing

Does not include things like handling TLB misses

May include message handling (if the application is not waiting)

OS Noise (Jitter): the variation in OS interference

Fixed work (selfish): measure variation in time to complete

Fixed time (FTQ): measure variation in amount of work completed

e.g., garbage collection–noise is usually there to do good things
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FTQ on Catamount

FTQ (Fixed Time Quantum)

FTQ

Fixed Time Quantum

Measure application 
work in fixed time 
quantum

Matt Sottile, LANL 
(now at Google) 

Source: Larry Kaplan Cray, Inc.

QK Quantum
PCT Quantum
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FTQ on Linux
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FTQ on LinuxSource: Larry Kaplan Cray, Inc.



FTQ on ASC PurpleTypical FTQ Output From Purple
The Day After Purple’s Firmware 

Upgrade… 

Typical FTQ

After Firmware upgrade
(VM is using cycles)

Source: Terry Jones, LLNL
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What’s the big deal?
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Noise does matter
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High Frequency, Low Duration
2.5% total noise injected
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Noise does matter–really
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Low Frequency, High Duration
2.5% total noise injected

Source: Kurt Ferreira, UNM



Dealing with noise

Minimize noise
Lots of short noise is better than small amounts of long noise
Make “noisy” services optional

Block synchronous systems services
synchronizing tens of thousands of nodes is hard

Hardware support
for noisy operations (e.g., global clock)
for operations affected by noise (e.g., collective offload)

Develop noise tolerant algorithmic approaches
equivalent to latency tolerant and fault oblivious approaches
(i.e., accept that noise will eventually dominate all other things)

Define how applications can be noise tolerant (e.g., avoid ALLREDUCE)

19



Linux
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Linux
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What was the question?



The 800lb Penguin

Disk

gcc
glibc

MPI

Rob Pike, “Systems Software Research is Irrelevant,” 2/2000
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“Linux’s cleverness is not in the software, 
but in the development model”

ssh
telnet dns

emacs

email

rlogin

TCP/IP

Network

I/O BusI/O DeviceI/O Device

VideoVideoVideoVideo
DiskDiskDisk

NetworkNetworkNetwork

I/O BusI/O Bus

Linux

I/O Device
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“Linux’s cleverness is not in the software, 
but in the development model”

TCP/IP
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The 800lb Penguin

Disk
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Rob Pike, “Systems Software Research is Irrelevant,” 2/2000
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no “broken” hardware
limited number of devices
minimal services
e.g., CNL, ZeptoOS

“Linux’s cleverness is not in the software, 
but in the development model”

TCP/IP

Network

I/O Bus

Linux

I/O Device

on a diet



Building Compute Node Linux
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FTQ on Linux
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FTQ evolving on CNL

Source: Larry Kaplan Cray, Inc.

•BusyBox (embedded)
•no remote login
•add “capacity” features as needed by application

•Libraries
•NFS, LDAP

Complex interactions in 
changing the quantum
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CTH on Catamount and CNL
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Caution: Preliminary results

Source: Courtenay Vaughan, Sandia



Partisn on Catamount and CNL
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Keeping up with Linux
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Source code is small enough that developers can keep it in their head
Catmount is <100,000 lines of code

Early example: dual processors on ASCI/Red
Heater mode

Message co-processor mode
designed/expected mode of use

Compute co-processor mode
aka “stunt mode”

Virtual node mode
6 man-month effort to implement

became the standard mode

Catamount is Nimble
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P0 P1 Memory

Network 
FIFOs



Adding Multicore Support

SMARTMAP (Brightwell, Pedretti, and Hudson)

Map every core’s memory view into every other core’s memory map

Almost threads, almost processes

modified 20 lines of kernel code

in-line function (3 lines of code) to access another core’s memory

Modified Open MPI

Byte Transport Layer (BTL), requires two copies

Message Transport Layer (MTL), message matching in Portals

Less than a man-month to implement
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SMARTMAP Performance
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Why Linux .... Why not ....
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Community

Easier to hire Linux specialists

Lots of eyes to find solutions, and 
others care

Environment

Performance tools

Development tools (compilers)

Libraries

Highlander:  there will be one 

One is the loneliest number... 
diversity is a good thing

Linux is a moving target

hard to get changes into Linux

HPC is not the goal

Shrinking Linux eliminates parts of 
the environment

when does it stop being Linux?

Catamount as a virtualization layer



Lightweight Storage Systems
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Basic Idea

Apply lightweight design philosophy to storage systems

Enforce access control: authentication, capabilities with revocation

Enable consistency: lightweight transactions 

Expose full power of the storage resources to applications

Applications manage bandwidth to storage

“Off line” meta data updates – “Meta bots”
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File/Object Creates
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Lustre File Creates LWFS Object Creates

Note different scales for y axis
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Checkpoints

1. Initiate a lightweight transaction on node 0
Broadcast transaction id to all nodes

2. Each node creates a unique data object & dumps local data
parallelism only limited by disks
no metadata, no consistency, no coherency
data objects are transient

3. All nodes send their data object id to node 0
4. Node zero builds an “index object” and commits the transaction

two phase commit with the storage servers 
data objects and index object are permanent
could be done “off line” by a meta-bot
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Write Throughput
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A final story

Many-to-one operations are problematic at scale

Cannot reserve buffer space on compute nodes for 10,000 to 1

Catamount perspective–it’s a protocol failure, fix the application!

Upper levels are responsible for flow control

Catamount happily drops messages–failing sooner rather than later is better

BG/L–the customer is right

Protect applications from themselves

Flow control is fundamental, even if it handicaps well written applications
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The Design Space

Enable

Good

Prevent

Bad

Enable 
Good 
Things

Prevent Bad 
Things
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Thanks

UNM Scalable Systems Lab

Patrick Bridges, Patrick Widener, Kurt Ferreira

Sandia National Labs

Ron Brightwell, Ron Oldfield, Rolf Riesen, Lee Ward, Sue Kelly

“Fools ignore complexity; pragmatists suffer it; experts avoid it; geniuses 
remove it.”
Alan J. Perlis
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