
The XtreemOS JScheduler: Using Self-Scheduling
Techniques in Large Computing Architectures

Barcelona Supercomputing Center
Technical University of Catalunya

F. Guim, I. Rodero, M. Garcia, J. Corbalan

1

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

2

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

3

The project

• It has been already introduced …

• It aims at investigating and proposing new services that should
be added to current operating systems to build large Grid.

• In this paper we focus on:
– the Application Execution Management (AEM) component of the

XOS responsible of:
• Job scheduling

• Resource management.

– Job Scheduling Strategies for this system
• How we deal with job submissions in such large systems ?

4

The AEM Architecture

• ADS  Application Discovering System

• jScheduler  schedules one job, it receives a pre-selection of
resources from the ADS

• Resource Manager  manages the computational resource

5

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

6

The Architecture

• N Independent centers
– No centralized architectures

– keep their scheduling policies

– heterogeneous with different capabilities

– Submission: Local Centers or Dispatcher

• The scheduling has to deal with
– Large scale systems

– Dynamic systems

– Very Heterogeneous

8

Policy A

Resource B

Policy B

Resource C

Policy C

Resource A

Resource D

Policy D

Proposed Solutions

Global Optimizer Model
[Yue04]

Global Scheduler Model
[Rod05,Huang97,Diet01]

Global Dispatcher Model
[Car04,Shro04]

Pull Model
[Pin02]

AppLess Model
[Ber07]

9

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

10

Our proposal

• The ISIS-Architecture
– Optimize user metrics

– One Dispatcher per job

– Task Dispatching Policies

– Local Scheduling information  New API between Dispatcher/HPC
Centers

– Use of Advanced Services (i.e: Runtime predictors)

• User metrics to optimize
– Wait time

– Slowdown

– Etc.

11

Task Dispatching Policies

• Random [mark99, harch00,aguilar97]

• Round-Robin [mark99, harch00,mark98]

• Shorts-Queue [schro00,harch99]

• Less Work Left [schro00,harch99]

• Less Submitted Jobs [schro00,harch99]

• …

12

All based on the System
Status Information

We propose to use
Scheduling Information

The ISIS Dispatcher techniques

13

Policy A

Resource B

Policy B

Resource C

Policy C

Resource A

D
ispatche

r
D

ispatche
r

D
ispatche

r

Submit J
ob A2

Submit Job A1

Submit Job B2

Submit Job A3

Submit Job C2

Predictio
n System

D
ispatche

r

D
ispatche

r

Scheduling Based on the Wait time

14

Policy A

Resource B

Policy B

Resource C

Policy C

Resource A

D
ispacher

Predictio
n System

Run time
Center A ? Wait Time Prediction

Job with RT-A?

WT-A

R
T-A

…
…

WT-A WT-B
WT-C

Center with Less
Wait time

Submit

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

16

The Xtreem OS Extension

17

XOS
Resources

Policy A

Policy B

Policy C

Policy A

Policy B

Policy C

Policy A

Policy B

Policy C

Policy A

Policy B

Policy C

R
esource

M
anager 1

The new Scheduling

18

Policy A

Policy B

Policy C

D
ispacher

Predictio
n System

Run time
Center A ? Wait Time Prediction

Job with RT-A?

WT-A

R
T-A

…
…
Submit

R
esource

M
anager 2

R
esource

M
anager 3

ADS

K=3 Resources
satisfying job
requirements.

R
M

1, R
M

2,
R

M
3

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

20

The evaluation model

• Alvio Simulator
– Event Driven Simulator

– Models all the components of multi-sites systems
• F. Guim, J. Corbalan JSSPP 07

• F. Guim, I.Rodero Grid 08

– Models the local resources (Local Resource Managers +
Schedulers)

• F. Guim, J. Corbalan, J. Labarta, PDCAT 2007

• F. Guim, J. Corbalan. HPCS 08

• Workloads used
– Cluster & Grid architectures

– Standard Workload Format [Steve99]

– Workload Archive [www.cs.huji.ac.il/~feit/parallel/workload/]

21

In the model we have ..

• K independent centers:
– Number of processors

– Performance Factor

– Job Scheduling Policy (FCFS, SBF-Backfilling, EASY-Backfilling,
Shortest Job First and LXWF-Backfilling)

– Resource Selection Policy (First Fit)

• The prediction system
– Uses classification trees + discretization techniques

• We have modeled the ADS
– Interface

ListOfRM resourcesMatching(JobRequirements, int k);

– The ADS returns K Resource Managers

SelectedRM~U[1..N]  N number of centers

22

The Workloads & Scenarios
• The NASA Ames iPSC/860 log.

• The Los Alamos National Lab (LANL-CM5) log.

• The San-Diego Supercomputer Center Paragon (SDSC-Par).

• The Cornell Theory Center (CTC) SP2 log.

• The Lawrence Livermore National Lab (LLNL).

• The Swedish Royal Institute of Technology (KTH) IBM SP2
log.

• The San Diego Supercomputer Center (SDSC-SP2) SP2 log.

• The LANL Origin 2000 Cluster (Nirvana) log.

• The OSC Linux Cluster log (OSC).

• The San Diego Supercomputer Center Blue Horizon log

• The HPC2N log.

• The DAS2 5-Cluster Grid Logs.

• The San Diego Supercomputer Center DataStar log

• The LPC Log.

• The LCG Grid log.

• The SHARCNET log .

• The LLNL Atlas log.

• The LLNL Thunder log.

23

The Experiments

• Evaluation of the Local Centers (original scenarios)

• Evaluation of the XOS+ISIS Architecture
– The ADS

• Returning K Resource Managers Selected Randomly

– One dispatcher per job

– One prediction system

• The Task dispatching policies
– Less-Waittime

• Based on runtime prediction

– Less-Slowdown
• Based on runtime prediction + Waittime prediction

24

The Local Scenarios

• Wait time
– Minimum Avg. : 5 secs (DAS2-fs3)

– Avg. Avg.: 18198 secs

– Maximum Avg. : 126565 secs
(LANL-CM5)

25

• Slowdown
– Minimum Avg. : 1,03 (DAS2-fs3)

– Avg. Avg.: 135

– Maximum Avg. : 1364 (LANL-CM5)

Slowdown Improvement

26

• Improvements from

• Less-Waittime  k=3
• Less-Slowdown  k=2

• Qualitative improvements
• Less-Waittime  k>13
• Less-Slowdown  k>4

• The Less-Slowdown shows better results.
• A good trade-off between k and slowdown

• k=5

Wait time

27

• Improvements from
• Less-Waittime  k=2
• Less-Slowdown  k=3

• Qualitative improvements
• Less-Waittime  k>5
• Less-Slowdown  k>9

• The Less-Slowdown shows better results from k>10
• The Less-Waittime shows better results from k<10
• A good trade-off between k and slowdown

• k=6

Outline

• The XtreemOS Project

• The scenario and its challenges

• The ISIS-Dispatcher

• Including the ISIS-Dispatcher in the XOS

• Evaluation

• Conclusions & Future Work

28

Conclusions and Future Work

• We have presented how the ISIS-Dispatcher can be used in
XOS
– Using prediction system

– Using the ADS system

– Providing good Slowdown and Wait time performance

• We have shown the impact of the ADS
– In general, from K=3 we have good metrics values

– In general, from k>10 we have a qualitative improvement

• Future work must include
– Consideration of on-fly submissions

– Consideration of reservations

– Consideration of non centralized prediction techniques

29

