

The XtreemOS JScheduler: Using Self-Scheduling

Techniques in Large Computing Architectures

Barcelona Supercomputing Center Technical University of Catalunya

F. Guim, I. Rodero, M. Garcia, J. Corbalan

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

The project

- It has been already introduced ...
- It aims at investigating and proposing new services that should be added to current operating systems to build large Grid.
- In this paper we focus on:
 - the Application Execution Management (AEM) component of the XOS responsible of:
 - Job scheduling
 - Resource management.
 - Job Scheduling Strategies for this system
 - How we deal with job submissions in such large systems ?

The AEM Architecture

- ADS → Application Discovering System
- jScheduler → schedules one job, it receives a pre-selection of resources from the ADS
- Resource Manager \rightarrow manages the computational resource

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

The Architecture

Policy B

Resource B

- N Independent centers
 - No centralized architectures
 - keep their scheduling policies
 - heterogeneous with different capabilities
 - Submission: Local Centers or Dispatcher
- The scheduling has to deal with
 - Large scale systems
 - Dynamic systems
 - Very Heterogeneous

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

Our proposal

- The ISIS-Architecture
 - Optimize user metrics
 - One Dispatcher per job
 - Task Dispatching Policies
 - Local Scheduling information → New API between Dispatcher/HPC Centers
 - Use of Advanced Services (i.e: Runtime predictors)
- User metrics to optimize
 - Wait time
 - Slowdown
 - Etc.

Task Dispatching Policies

Francesc Guim Bernat

- Random [mark99, harch00, aguilar97]
- Round-Robin [mark99, harch00, mark98]
- Shorts-Queue [schro00,harch99]
- Less Work Left [schro00,harch99]
- Less Submitted Jobs [schro00,harch99]

All based on the System Status Information

We propose to use Scheduling Information

. . .

The ISIS Dispatcher techniques

Scheduling Based on the Wait time

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

The Xtreem OS Extension

Centro Nacional de Supercomputación

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

The evaluation model

- Alvio Simulator
 - Event Driven Simulator
 - Models all the components of multi-sites systems
 - F. Guim, J. Corbalan JSSPP 07
 - F. Guim, I.Rodero Grid 08
 - Models the local resources (Local Resource Managers + Schedulers)
 - F. Guim, J. Corbalan, J. Labarta, PDCAT 2007
 - F. Guim, J. Corbalan. HPCS 08
- Workloads used
 - Cluster & Grid architectures
 - Standard Workload Format [Steve99]
 - Workload Archive [www.cs.huji.ac.il/~feit/parallel/workload/]

In the model we have ..

- K independent centers:
 - Number of processors
 - Performance Factor
 - Job Scheduling Policy (FCFS, SBF-Backfilling, EASY-Backfilling, Shortest Job First and LXWF-Backfilling)
 - Resource Selection Policy (First Fit)
- The prediction system
 - Uses classification trees + discretization techniques
- We have modeled the ADS
 - Interface

ListOfRM resourcesMatching(JobRequirements, int k);

– The ADS returns K Resource Managers

SelectedRM~U[1..N] \rightarrow N number of centers

The Workloads & Scenarios

- The NASA Ames iPSC/860 log.
- The Los Alamos National Lab (LANL-CM5) log.
- The San-Diego Supercomputer Center Paragon (SDSC-Par).
- The Cornell Theory Center (CTC) SP2 log.
- The Lawrence Livermore National Lab (LLNL).
- The Swedish Royal Institute of Technology (KTH) IBM SP2 log.
- The San Diego Supercomputer Center (SDSC-SP2) SP2 log.
- The LANL Origin 2000 Cluster (Nirvana) log.
- The OSC Linux Cluster log (OSC).
- The San Diego Supercomputer Center Blue Horizon log
- The HPC2N log.
- The DAS2 5-Cluster Grid Logs.
- The San Diego Supercomputer Center DataStar log
- The LPC Log.
- The LCG Grid log.
- The SHARCNET log .
- The LLNL Atlas log.
- The LLNL Thunder log.

Center	CPUs	Fact. Policy
NASA Ames	128	4 SJBF
LANL-CM5	1024	FCFS
SDSC Paragon	416	EASY
CTC IBM SP2	512	2 EASY
KTH	100	4 EASY
SDSC SP2	128	4 LXWF
Nirvana	2048	4 EASY
OSC	178	4 SJBF
SDSC-Blue	1024	2 FCFS
HPC2N	240	4 EASY
DAS-fs0	144	4 EASY
DAS-fs1	64	SJE
DAS-fs2	64	S SIBE
DAS-fs3	64	SIBE
DAS-fs4	64	S FCFS
SDSC-DS	184	\$
LPC	70 x 2	8 FCFS
LGC	100 x 250	S EASY
Sharnet	6 x 128 1 x 1068 1 x 1536 1 x 3072 1 x 384	5 SJF 5 SJF 5 SJF 5 SJF 5 SJF
Atlas	1152	S FCFS
Thunder	1024	8 EASY
CM5	1152	B FCFS

The Experiments

- Evaluation of the Local Centers (original scenarios)
- Evaluation of the XOS+ISIS Architecture
 - The ADS
 - Returning K Resource Managers Selected Randomly
 - One dispatcher per job
 - One prediction system
- The Task dispatching policies
 - Less-Waittime
 - Based on runtime prediction
 - Less-Slowdown
 - Based on runtime prediction + Waittime prediction

The Local Scenarios

Metric:	Wait time		Slowdown	
Center	Avg	95 _{th}	Avg	95 _{th}
CTC-SP2	5249	29586	7,76	39,01
LCG	434, 12	4320	4,3	23,32
DAS2-fs0	22,68	135		1,69
DAS2-fs1	5576	43414		21,18
DAS2-fs2	29594	99109	6,33	14,44
DAS2-fs3	4.52	100	1,03	3,23
DAS2-fs4	39083	192140	<u></u>	934,33
HPC2N	23980	87607	72.05	299,5
KTH-SP2	8864	54222	74,46	571,5
LANL-CM5	126565	308231	1364	4061
LPC	122	1323	tur Caro	3,42
Atlas	1993	14217	3,18	12,97
Thunder	18891	47758	138	366,8
BLUE	12383	27644	68.80	164,2
Par	12 453	12000	5-1 7-2	18,42
OSC	1233,32	25433	5,443	24,43
SDSC-SP2	116.12	1233	1,45	4,22
NASA	232,45	2133	110 110 110	10,43
Sharnet	649	4432	43.6	749
All	18198	29345	135.5	653

- Wait time
 - Minimum Avg. : 5 secs (DAS2-fs3)
 - Avg. Avg.: 18198 secs
 - Maximum Avg. : 126565 secs (LANL-CM5)
- Slowdown
 - Minimum Avg. : 1,03 (DAS2-fs3)
 - Avg. Avg.: 135
 - Maximum Avg.: 1364 (LANL-CM5)

Avg. Orig. BSLD/ BSLD ISIS(K res.)

- Improvements from
 - Less-Waittime \rightarrow k=3
 - Less-Slowdown \rightarrow k=2
- Qualitative improvements
 - Less-Waittime \rightarrow k>13
 - Less-Slowdown → k>4
- The Less-Slowdown shows better results.
- A good trade-off between k and slowdown
 - k=5

Wait time

- Improvements from •
 - Less-Waittime \rightarrow k=2
 - Less-Slowdown \rightarrow k=3
- Qualitative improvements
 - Less-Waittime \rightarrow k>5
 - Less-Slowdown \rightarrow k>9
- The Less-Slowdown shows better results from k>10
- The Less-Waittime shows better results from k<10
- A good trade-off between k and slowdown
 - k=6

- The XtreemOS Project
- The scenario and its challenges
- The ISIS-Dispatcher
- Including the ISIS-Dispatcher in the XOS
- Evaluation
- Conclusions & Future Work

Conclusions and Future Work

- We have presented how the ISIS-Dispatcher can be used in XOS
 - Using prediction system
 - Using the ADS system
 - Providing good Slowdown and Wait time performance
- We have shown the impact of the ADS
 - In general, from K=3 we have good metrics values
 - In general, from k>10 we have a qualitative improvement
- Future work must include
 - Consideration of *on-fly* submissions
 - Consideration of reservations
 - Consideration of non centralized prediction techniques

