
XOS-SSH: A Lightweight User-Centric Tool to Support Remote Execution
in Virtual Organizations

An Qin Haiyan Yu Chengchun Shu Bing Xu
Institute of Computing Technology, Chinese Academy of Sciences

Beijing,China
{qinan,shuchengchun,xubing}@software.ict.ac.cn

yuhaiyan@ict.ac.cn

Abstract

Large-scale virtual organizations (VOs) often comprise
resource providers from different administrative do-
mains, each probably with a specific security model.
Grids try to solve this problem by providing a new se-
curity infrastructure featured with single-sign on (SSO).
However, the usability of Grids is often impaired by the
complexity of configuring and maintaining the new secu-
rity infrastructure as well as adapting to new interfaces
of security enabled services. The co-existing of differ-
ent Grid platforms and SSO solutions among resource
providers makes this situation even worse. In this paper,
we present XOS-SSH, a lightweight user-centric tool to
support remote execution of jobs among heterogeneous
nodes of VOs. XOS-SSH is a modified version of the
widely used OpenSSH tool based on several OS-level
VO support mechanisms developed in XtreemOS project
[23]. XOS-SSH adopts a pluggable framework that is
capable of supporting different authentication schemes
and making them transparent to shell users. The per-
formance evaluation of XOS-SSH around NAS Parallel
Benchmarks (NPB) shows that our current implementa-
tion incurs trivial overhead comparing to the unmodified
one.

1 Introduction

Virtual Organizations(VOs) have generated increasing
attention from both research and industry communities
for that they support augmented and cost-effective re-
source sharing among geographically distributed service
providers (SPs). The foremost issue of building VOs is
the integration of different security models adopted by
different administrative domains in order to provide a
unified and seamless access to users. This issue needs
to be addressed in a scalable way without compromising
on usability and flexibility.

Grids [18] try to solve the cross-domain security issue

by providing new security infrastructures featured with
single sign on (SSO) [25]. As a de-factor standard, Grid
Security Infrastructure (GSI) [12] enables SSO access
of nodes by introducing proxy certificates and delega-
tion [30]. However, domain administrators and end users
are often frustrated by the complexity of configuring and
maintaining a new security infrastructure. From our ex-
periences on deploying Grid software on China National
Grid [7], there are several reasons hindering the promo-
tion of Grid software in a production testbed:

• Grid software is generally provided as a heavy soft-
ware stack which consists of many tightly coupled
components, and any mis-configured one of them
could stop the working of the whole software. Our
survey shows that it generally takes three or four
days for a professional engineer to make Grid soft-
ware work smoothly, whereas deploying packages
of current Linux distributions only takes minutes for
unpacking and installation.

• Both administrators and end users need to maintain
a new set of security data (e.g. credentials, mapping
files) together with existing ones managed by tra-
ditional security frameworks such as NIS/YP [29],
kerberos [28] and LDAP [13]. A typical example is
that a new Grid user needs to be enrolled in grid-
map files of each node besides the allocation of lo-
cal accounts in each node. Another example is that
proxy certificates need to be renewed periodically
for long running jobs. Such additional effort could
be partially saved by developing automatic routine
services while at the risk of exposing new security
holes.

• For HPC developers and end users, security-enabled
Grid services nowadays exhibit new access inter-
faces to them which generally beyond the knowl-
edge and skill of them. For example, programming
with Grid services with WS-Security [26] is a non-

trivial task for traditional Fortran developers. The
user survey of NSF cyberinfrastructre [3] shows that
only 18% of TeraGrid users have experienced with
Grid tools in 2005, and 10% of users have used grid
tools in production runs in 2006, while another in-
teresting result is that scp is the most popular data
management tool (up to 52% of users). Compar-
ing to daily used Linux utilities to launch processes,
the job execution on Grid nodes is generally a very
complex workflow due to the layered security in-
frastructure working behind.

In large-scale VOs, the co-existing of different Grid
platforms, such as Globus [18], Glite [22], Unicore [15]
and OMII [4], together with several SSO solutions like
Shibboleth [16] and Liberty alliance [2], make the VO-
level resource sharing more complicate than ever. The
problem of Grid interoperability has been proposed for
several years whereas there are no simple solution for it
due to the fact of lacking common accepted standards.

In this paper, we present XOS-SSH, a lightweight
user-centric tool to support remote execution of jobs
among heterogeneous nodes of VOs. XOS-SSH is a
modified version of the widely used OpenSSH tool. It is
based on several OS-level VO support mechanisms de-
veloped in XtreemOS project [23]. XOS-SSH adopts a
pluggable framework that is capable of supporting dif-
ferent authentication schemes and making them transpar-
ent to shell users. The performance evaluation of XOS-
SSH around NPB [10] benchmarks shows that our cur-
rent implementation incurs trivial overhead comparing to
the unmodified one.

The rest of the paper is organized as follows: we first
analyze related technologies in section 2 and identify
several key challenges in our design in section 3. Then,
we address the detailed design issues in section 4 and
carry out performance evaluations in section 5. Finally,
we discuss related work in section 6 and conclude the
paper in section 7.

2 Background

In this section, we present related techniques that moti-
vate us to implement a lightweight remote execution tool
for end users, which could deal with security challenges
in consuming resources from several heterogeneous do-
mains in a VO.

2.1 XtreemOS and VOs

XtreemOS [23] is a European project that aims to design,
implement, evaluate and distribute an open source oper-
ating system, which supports Grid applications and runs
on a range of platforms, from clusters to mobile devices.

The goal is to provide an abstract interface to local re-
sources, as a traditional OS does for a single computer.
XtreemOS is based on the existing Linux OS. A set of
system services, extending those found in Linux, pro-
vide users with the capabilities associated with Grid mid-
dleware. This native support means that XtreemOS will
significantly ease the management and use of VOs with-
out compromising on efficiency, flexibility, and back-
ward compatibility. From the perspective of end users,
they do not need to learn new interfaces and tools to use
VOs as most tools will expose the standard UNIX com-
mands familiar to users. Also, applications will not need
to be re-factored to run on VOs as most XtreemOS APIs
are POSIX-compliant. As part of the XtreemOS work, a
ssh-based remote execution tool is developed to facilitate
end users to launch jobs and move data among nodes of
a VO, which aims to overcome many of the barriers to
the use of VOs.

2.2 OS-level plug-in frameworks

In Linux/Unix-like distributions, Operating System (OS)
is equipped with some pluggable frameworks and inter-
faces, which can be exploited by developers to customize
OS behaviors. With these pluggable frameworks, cus-
tomized modules can be manually plugged into system
and interact with system software via standard interfaces,
without any modification of OS codes. In XtreemOS,
Pluggable Authentication Module (PAM) and Name Ser-
vice Switch (NSS) are leveraged to insert VO support
functionalities into OS [23].

PAM, originally proposed by sun, is now widely used
in Linux/Unix-like distributions. Its pluggable frame-
work enables system administrators to choose authenti-
cation scheme for specific applications [27]. In large-
scale VOs , SPs may belong to different domains which
adopt different authentication schemes and security pro-
tocols. Specific PAM modules developed for each au-
thentication model could be used by SPs without affect-
ing applications. In addition, PAM modules could also
be used to perform authorization and resource usage en-
forcement.

NSS is also a pluggable framework for name resolving
of Linux system objects such as users, groups and hosts.
In NSS, query against traditional Unix file-based infor-
mation stores (e.g. /etc/passwd and /etc/group)
could be substituted with querying other databases such
as NIS+, LDAP and customized NSS modules [6] [31].
NSS APIs are standard libc calls and NSS mod-
ules could be configured outside the application (e.g.
in /etc/nsswitch.conf). With NSS, customized
modules can be developed to process user related infor-
mation (such as resolving Distinguished Name of a Grid
user to a local account) while making this transparent to

2

legacy applications.

2.3 OpenSSH-based modification

In our design, we modify OpenSSH [5] to support se-
cure communication among nodes with different security
models. Modification based on OpenSSH could benefit
from several aspects.

Firstly, OpenSSH is a standard component in
Linux/Unix distributions nowadays. It is extensively
used by end users for secure login and data transmis-
sion (e.g. scp, sftp) among local and remote nodes.
Many projects adopt it as a standard secure channel
for communication. For example, parallel applications
built upon MPI depend on OpenSSH to launch processes
on trusted nodes. Extending OpenSSH to support VOs
could greatly improve the usability for end users and pro-
vide transparency to traditional parallel applications.

Secondly, OpenSSH is featured with an extensible
code skeleton which allows new authentication methods
to be added into current OpenSSH without affecting its
original functionalities. The extended OpenSSH can turn
back to the original authentication method if customized
extensions fail. Also, system administrators could deter-
mine whether the extensions are enabled.

Lastly, the latest OpenSSH release was implemented
as a PAM-aware application [27], which means that it
could be configured to use customized PAM modules to
do authentication against VO users.

3 Challenges

Several challenges still remain when developing a secure
remote execution tool among heterogeneous nodes in a
VO.

The first challenge is the design of an efficient pro-
tocol to support multiple authentication models. In a
large-scale networked environment, the communication
channel between heterogeneous nodes needs to securely
carry sufficient information to prove users’ identities and
attributes. The protocol of data transmission is to be de-
signed as flexible as possible to accommodate multiple
authenticate models while keeping the packet size small,
as redundant data could reduce the efficiency of authen-
tication processing codes.

The second is the support of multiple authentication
models at server-side. Additional work needs to be done
to make OpenSSH work seamlessly with PAM and NSS
modules. Various client credentials need to be securely
passed from client-side to server-side and then to PAM
modules. As PAM framework allows multiple mod-
ules to work together for a PAM-aware application, there
should be a negotiation process to determine which set of

PAM modules are put into action for a specific authenti-
cation model.

The third is the scalable support for large amount of
VO users. This scalability issue lies in two aspects: a) si-
multaneous accessing of the same SP node by numerous
VO users needs to be differentiated and isolated; b) the
management of user accounts in a node needs to be per-
formed in a scalable manner without compromising on
security in terms of access control and accounting. Tra-
ditionally, system administrator may allocate a local ac-
count for each VO user in each SP node to guarantee the
isolation among them. However, this could be a night-
mare for administrators when there are large amount of
users in VOs, in which memberships of users and access
rules of nodes are dynamically changing. To achieve a
scalable node-level VO support , it is natural to allow
VO users to access nodes without pre-allocation of local
accounts.

4 Design and Implementation

In this section, we will present our design in details. We
introduce the overall architecture first, then we explain in
details how we address challenges mentioned above.

4.1 Overview

The overall architecture upon which current XOS-SSH
works is shown in Figure 1 [14]. A VO user obtains an
X.509 certificate from a Certificate Authority (e.g. from
the Credential Distribution Authority (CDA)[32] or from
Globus SimpleCA [12]) and presents it to a PAM-aware
application running in a VO node. This PAM-aware ap-
plication checks XOS-Cert for validity and whether the
requested account already exists. Valid XOS-Certs will
be stored for each user (via Kernel Key Retention Service
[1], etc.) for further checking by local or remote services.
For a VO user who has been granted access but with no
corresponding local account, an Account Mapping Ser-
vice (AMS) maps the user’s identity to a dynamically
created virtual account in local nodes (discussed later).
After the VO user is authenticated, the mapping informa-
tion of VO-level users and groups could be obtained by
the NSS extensions via standard libc calls. The AMS
guarantees that only authorized processes can obtain this
information.

As a PAM-aware application, OpenSSH is extended
to use the newly developed PAM and NSS modules. It
is worth to mention that the current architecture is not
bundled with a specific security model (i.e. not limited
in fitting with default VO model of XtreemOS).

3

SSHD

libpam
Model-specific
PAM module
(pam_xos.so)

libc
Model-specific
NSS module
(libnss_xos.so)

Mappings
database

Account Mapping Service
AMS

1. authentication
request

2/6. PAM configured
to use specific

module

4. authentication
success

7. mapping request and
store mapping relationship

NSS subsystem
PAM subsystem

3. store credential

5. account
confirmed
request

8. account
confirmed
success

1. user information
request

2. NSS configured
to use specific

module

3. mapping
information

request

4. mapping
information

5. user
information

Prototype-specific component

System standard component

SSH

Model-specific
 trusted CA

(e.g. CDA, SimpleCA)

VO management

1. cert request

2. user XOS_cert

3. converation
4. show

credential to
server

PAM disposal phrase

NSS disposal phrase

OpenSSH-supported
cred accessing

Figure 1: Overall architecture

4.2 Protocol

Currently, standard OpenSSH does not support au-
thentication methods based upon X509-based certifi-
cate. XOS-SSH extends OpenSSH by introducing a cus-
tomized packet format and communication protocol. The
packet format is illustrated as Figure 2. A packet is
composed of SSH header (HDR) followed by a series
of segments, each of which representing a user creden-
tial within a specific authentication model. Data fields of
each segment are explained as follows.

HDR sender_name domain_name

sig_flag key_alg security_token signature

sender_name domain_name

sig_flag key_alg security_token signature

Figure 2: Packet format in XOS-SSH

• sender name: The name of the sender (e.g. DN
or usernmae), which is to be checked with security
token by sever-side.

• domain name: The field is holding the informa-
tion to tell server-side which category of authenti-
cation models the user certificate is belonged to, so
that PAM can choose corresponding module for cer-
tificate verification.

• security token: security related data to prove
the user’s identity and attributes (e.g. password,
proxy certificate, attribute certificate, etc.).

• sig flag, key alg and signature: Each
segment is attached with a signature which is signed
with sender’s private key. The key alg de-
notes the signature algorithm and the sig flag is
marked with whether the segment is signed.

The length of each segment is variable because not all
fields are necessary in some authentication models. (e.g.
only uid/pwd in MyProxy [20]).

Although OpenSSH encrypts communication data, it
only guarantees that data are from the right peer rather
than the right user. Malicious users may capture other
users’ credentials and then send them to SP nodes from
legal hosts. The server is not aware of this potential at-
tack if nothing is done to detect the attacker. Hence,
packets need to be signed with the user’s private key if
possible. Taking the GSI model for example, the cus-
tomized protocol requires the client machine to pack
user’s DN and proxy into the same segment, and then
signs the segment with user’s private key before trans-
mission. In server-side, public key would be fetched

4

from received proxy to verify the segment’s signature.
And such the received user’s DN could be verified. PAM
module plugged into server-side will do further checking
of whether the user is allowed to access local node.

4.3 Pluggable modules for specific authen-
tication models

As mentioned above, pluggable modules are utilized to
cope with heterogeneity of authentication models. The
key issue is to specify interaction agreement between
PAM and SSH server. In our implementation, model-
specific PAM conversation handlers are developed to
pass identity information from SSH server to PAM mod-
ules. The interaction agreement defined in a handler is
specific to a given authentication model. Each module
has its own handler to get information from a PAM-aware
application. SSH server can be configured to use a chain
of several PAM modules. Each PAM module in the chain
first obtains domain information from a packet (defined
in domain name), and determine whether it is suitable
to process subsequent user credential. If a PAM module
takes charge of credential processing, the rest part of the
packet will be passed to its conversation handler. Gener-
ally, each PAM module only processes those credentials
matching a given authentication model. It is also pos-
sible that several PAM modules matches with the same
authentication model, where the priority of processing is
defined in the chain.

Currently, two specific PAM modules have been de-
veloped. One is pam xos.so for security model of
XtreemOS [32][33], and the other is pam gsi.so for
GSI model. The third one for MyProxy is ongoing. The
pam xos.so is developed to authenticate users with
certificates issued by CDA in XtreemOS project [32]; the
other one, pam gsi.so, is used to authenticate those
with certificates conforming to RFC3820 [19], which are
used in Globus and VOMS [9].

4.4 User mapping

As discussed in section 3, when there are large number
of VO users access the same SP node simultaneously, it
is critical to guarantee the isolation of users in terms of
resource usage, security and fail-recover. We first an-
alyze current OS mechanisms to address this issue and
then propose a ”virtual account” mapping mechanism to
address the scalable accessing and isolation.

In current OS, users are identified and isolated by their
uids. All system resources (processes, files, memory,
etc) are labelled with given uids. Users share their re-
sources via groups identified by gids. Currently, per-
mission checking and file access control in OS are per-
formed based on uids and gids. Without the modifi-

cation of kernel, we could make use of existing mecha-
nisms to realize the isolation of VO users if each VO user
can be mapped onto local uid and gids.

Unlike the Globus grid-mapfile approach [12], we are
not going to allocate several accounts in each SP server
in advance. As all user or group information are re-
quested via libc interfaces and further returned by NSS
subsystem, a specific NSS module and an AMS are de-
veloped to provide virtual account for each VO user.
Virtual accounts means they are accounts owning uid
and gid, but they are not stored in system databases
(/etc/passwd and /etc/group), and they are ag-
nostic to local applications but recognized by kernel.
Figure 3 depicts the mapping mechanism of virtual ac-
counts.

When an application requests user information, the
request will first be filtered by a specific NSS module
(libnss xos.so in figure 3, for example) to deter-
mine the type of request. If the request is not related
to VO users, libnss xos.so will give up the request.
Otherwise, libnss xos.so will contact AMS for re-
turning user information as a standard data structure (
struct passwd). It is not necessary to have pre-
allocated accounts in SP server.

The total number of pre-allocated accounts is hard to
be predicted to guarantee isolation among large number
of VO users accessing the same node. Compared with
physical accounts, scalability of virtual accounts lies in
that a) user information is not stored in system databases
but in separate databases built with BerkelyDB [24], and
b) the allocation of uid and gid can be expanded to
wider boundary, from 0 to 232 − 1 (the length of 32-bit
integer).

Since each VO user has a local mapped virtual ac-
count, OS can isolate and control their behaviors like
treating as conventional local users. Resource control,
security control and fault isolation can be maintained via
original mechanisms. Furthermore, for alleviating the
burden of garbage collection, files created by VO users
are stored in global filesystems such as NFS, while local
temporary files will be cleared out when they log out.

4.5 Account Mapping Service

Account Mapping Service (AMS) plays a crucial role of
managing runtime mapping information and acts as local
policy engine for VO access on the node. It is designed as
a separate daemon service running with root privileges so
as to decouple the core VO support functionalities from
specific PAM/NSS modules. The benefits of such design
are:

• As for shared libraries, PAM and NSS modules pro-
cess data in the same memory space of their driv-
ing applications. It is necessary to have a back-end

5

libc
Model-specific
NSS module
(libnss_xos.so)

Mapping
databases

Account Mapping Service
AMS

NSS subsystem
2. NSS configured

to use specific
module

Prototype-specific component

System standard component

...

... ...

...

standard
NSS module
(libnss_file.so)

System
databases

3. NSS configured
to use standard

module

network users

local users

kernel

local account

/etc/passwd
/etc/group

1. user information
request

4. user information

user mapping

Information request

Figure 3: User mapping

service to securely maintain key mapping data with
persistence support (e.g. in a database). AMS is
designed as a centralized point to ensure the consis-
tency of local mapping information.

• Since AMS could be configured to start at system
boot time, it can handle updated data of user map-
ping and local policies at runtime. Also, it could
provide the support for dynamically changing VOs
in terms of adding/removing resources or adjusting
scheduling policies.

Unlike PAM and OpenSSH which have been evaluated
by million of users for ensuring security, AMS is a new
component which could expose potential security holes.
The following security considerations has been incorpo-
rated into the implementation of AMS:

• AMS restricts access only from local PAM/NSS
modules by using Unix sockets rather than Internet
sockets. Hence by setting access rights of socket
files, only trusted PAM modules are able to store
and fetch data in AMS. In any case the NSS module
fetches read-only information from AMS.

• The trust relationship between PAM/NSS modules
and AMS is established by creating random asym-
metric keys. Based on this, the communication be-
tween PAM/NSS modules and AMS is encrypted
with a one-time password .

5 Performance Evaluation

In this section we present our performance evaluations,
which are designed to address various important met-
rics of remote execution in a distributed environment.
We first evaluate the basic performance with respect to
response time of authentication, average transfer rate
and network connections, comparing with OpenSSH.
And then, we examine the impact of our prototype on
hosted parallel application using NAS Parallel Bench-
marks (NPB) [10].

5.1 Experimental Environment Setup

We implement our prototype based on OpenSSH-4.5pl,
and name it with XOS-SSH in XtreemOS project [23].
The comparison of our prototype with OpenSSH is done
in a simulated distributed environment containing four
virtual machine nodes in a physical server. The simulated
environment is built on DELL PowerEdge 1950 with a
quad-core Intel Xeon CPU, 4G memory. Four virtual
machine nodes are created with VMware server (version
1.0.4) and each virtual machine node is assigned with
a single 1.6 GHz CPU, 388M memory and 8.0G disk.
CentOS4.3 is installed in each virtual machine node.

5.2 Basic Performance Evaluation

The basic performance is evaluated with simple
and easygoing methodology, which is widely used
in OpenSSH developer community. Although the
methodology is imprecise, it illustrates the difference

6

Traffic statistics OpenSSH XOS-SSH
Between first and last package 27.328 sec 23.843 sec
Packages 112967 79365
Avg. packages/sec 4133.815 3328.692
Avg. package size 996.000 bytes 997.000 bytes
Bytes 112534474 79205972
Avg. bytes/sec 4117988.014 3322022.483
Avg. MBit/sec 32.944 26.576

Table 1: Traffic statistics of OpenSSH and XOS-SSH

of authentication and transfer traffic between XOS-
SSH and OpenSSH. To compare the authentication
time, we use the command ”time ssh IPaddress
/bin/true” in console.

As shown in Figure 4, the time spent in user mode
is the same, but the time in kernel mode is longer for
XOS-SSH than that for OpenSSH. As mentioned above,
XOS-SSH has to deal with the complex authentication
models and store credentials via KKRS [1] to consume
more kernel time.

Figure 4: authentication time

For evaluation of network connection, a 100M file
is transferred from client to server by scp. With
wireshark [8], a traffic analyzer, we show the statis-
tics information in Table 1.

Although packet format and protocol have been ex-
tended to transmit more content in XOS-SSH, there is
not much influence on transmitting big blocks of data
with scp. The average package size (Avg. package size
in Table 1) indicates that XOS-SSH packs more content
in each packet. As shown in Table 1, the total number
of transmitted packets and the average speed of packet
transmission decreased in XOS-SSH, but the incurred
overhead is trivial .

5.3 Evaluation of Parallel Applications on
XOS-SSH

The OpenSSH is widely used to provide secure commu-
nication for HPC parallel applications, so we also eval-
uate the actual impact of XOS-SSH on hosted parallel
HPC applications. The experiment is constructed to use
NAS Parallel Benchmarks (NPB) [10], derived from the
computing kernels common on Computational Fluid Dy-
namics (CFD) applications.

The experiment uses MPICH2 to construct the HPC
experiment, which is a popular MPI tools to build MPI
applications. Below the MPICH2, both OpenSSH and
XOS-SSH provide a basic infrastructure for secure com-
munication, which connects two heterogeneous trusted
domains together. Each domain contains two nodes. One
of trusted domains is configured with XtreemOS authen-
tication model, and the other is using GSI authentica-
tion model. The difference between two authentication
models lies in the delegation manner: XtreemOS model
does not provide proxy delegation in current implemen-
tation, whereas GSI model supports proxy certificates for
delegation. For simplicity, currently we use a pseudo
proxy,similarly to MyProxy [17], to helps XtreemOS
users delegate a proxy for remote authentication. The
pseudo proxy is a short-lifetime data containing only ran-
domly generated name and a temporary password. With
this mechanism, XtreemOS users first store their creden-
tials to a online credential repository with randomly cre-
ated name and passwords. XOS-SSH then encapsulates
name and password as proxy packet and sends it to SP
servers. SP servers will contact with online service for
user’s credential after access is granted.

Figure 5 and 6 show results of NPB running on XOS-
SSH and OpenSSH. NPB benchmarks of class A and
class B was selected in experiments because class A is
proposed for workstation and class B is for small parallel
systems constructed by high-end workstations [11]. All
items in NPB benchmarks are tested twice running on
four nodes and average values are taken as our experi-
mental data.

As shown in Figure 5, XOS-SSH has lower Mil-
lions of Operations per second (Mop/s) than OpenSSH

7

(a) NPB benchmarks of Class A to evaluate execution speed (b) NPB benchmarks of Class B to evaluate execution speed

Figure 5: Comparison of millions of operations per second (Mop/s)

(a) Consumed time of running Class A benchmarks (b) Consumed time of running Class B benchmarks

Figure 6: Comparison of consumed time (seconds)

in small size of Class A benchmarks. However, when
computational size is enlarged to Class B, XOS-SSH ex-
pose several improvements, especially in some bench-
marks such as LU, SP, and BT, which is specific to
individual applications. In Class A benchmarks, the
average Mop/s of XOS-SSH is 724.255, comparing to
830.405 of OpenSSH. But in Class B, XOS-SSH is
higher than OpenSSH in average Mop/s, with the ratio
of 655.75:630.61.

The difference occurred in figures maybe results from
that: VO users are authenticated with their global creden-
tials at login time and their accesses to local resources
are enclosed within PAM session, so applications on
behalf of them are not necessary to be checked during
their execution. Hence, some application involved mass
data transmission will benefit from the improvement. As
shown by benchmarks of NPB Class B, some bench-
marks such as LU, SP, and BT, which is more related
to applications, are more efficient when compared with
original ones.

The compassion of consumed time also illustrates the
trivial overhead between XOS-SSH and OpenSSH, as
shown in Figure 6. In Class A benchmarks, the average

consumed time of XOS-SSH is 41.6525 while OpenSSH
is 37.5488. However, in Class B benchmarks, the ratio
of average consumed time has reduced, with 4499.858
of XOS-SSH and 4230.563 of OpenSSH. In Class B of
Figure 7, we show multiple comparison details except
the time of FT benchmark, because total consumed time
of FT benchmark is higher than any other benchmark
(34452.87:32234.22, in seconds).

6 Related works

In this paper, we discuss the design of lightweight remote
execution tool based on OpenSSH and OS-level exten-
sions. Other similar SSO support tools include those im-
plemented in the Globus Security Infrastructure (GSI),
GSI-SSH and MyProxy. The GSI-SSH is also a patched
version of OpenSSH to authenticate users within the GSI
framework. MyProxy[20] provides an online repository
for storing proxy certificates for users, which are ac-
cessed by providing normal uid/pwd pair. They are not
designed as a flexible framework to support other kinds
of authentication models.

For security issues, maintaining a new set of security

8

data has caused new work burden to both administrators
and end users. Traditional security frameworks such as
NIS/YP[29], kerberos [28] and LDAP[13] provide cen-
tralized identity management, but at the risk of single
point of failure. The mechanisms of Globus mapfile [12]
has limitation of scalability when deploying in large-
scale Grid applications. Some works such as [21] pro-
vide plug-ins for GSI to improve the limitation of grid-
mapfile, however the Globus-dependent plug-ins can not
be applied to other authentication models.In our design,
the virtual account mapping mechanism built upon NSS
extensions addressed the scalability issue while provid-
ing support for legacy applications.

7 Conclusion and Future work

In this paper, we present several issues hindering the uti-
lization of current Grid software and identify challenges
to realize remote execution cross heterogeneous security
domains in VOs. We developed XOS-SSH, a lightweight
user-centric tool by patching OpenSSH to use OS ex-
tensions developed in XtreemOS project. With the help
of pluggable framework, specific authentication mod-
els could be processed by XOS-SSH in a unified way.
Our design addresses several challenges by fully exploit-
ing existing mechanisms in OS, including flexible proto-
col design to transfer authentication information, model-
specific PAM modules and scalable user mapping Our
design significantly smoothes the gap between adminis-
trative domains built with specific authentication mod-
els, in term of seamless remote execution. We evaluate
our solution through a set of experiments to measure its
impact on parallel applications. The experimental data
of performance show that our prototype incurs trivial
overhead comparing to standard OpenSSH. Although our
prototype can easily integrate heterogeneous domains to-
gether, the experiments in this paper have not covered the
measurement of efficiency when there are huge amount
of domains. We will continue to exploit existing OS ex-
tensions to support resource sharing on VOs in a secure,
flexible and scalable manner.

8 Acknowledgments

This research is supported by XtreemOS project under
European Commission FP6 Contract (No. 033576). We
would like to thank Luis Pablo Prieto, Erich Focht, Yvon
Jegou and Zhiwei Xu for their support and insightful dis-
cussion.

References

[1] Kernel key retention service.
http://lxr.linux.no/source/Documentation/keys.txt.

[2] Liberty Alliance. http://www.projectliberty.org/.

[3] NCSA/SDSC Cyberinfrastructure User Survey 2005&2006.
http://www.ci-partnership.org/survey/.

[4] Open middleware infrastructure institute (omii).
http://www.omii.ac.uk/.

[5] Openssh. http://www.openssh.org/.

[6] System databases and name service switch.
http://www.gnu.org/software/libc/manual/html node/Name-
Service-Switch.html.

[7] The China National Grid (CNGrid) Project.
http://i.cs.hku.hk/ clwang/grid/CNGrid.html.

[8] Wireshark. http://www.wireshark.org/.

[9] ALFIERIA, R., CECCHINIB, R., CIASCHINIC, V., DELLAGNEL-
LOD, L., FROHNERE, A., LOIXRENTEYF, K., AND SPATAROG,
F. From gridmap-file to VOMS: managing authorization in a
Grid environment. Future Generation Computer Systems 2005,
21 (2005), 549–558.

[10] BAILEY, D., BARSZCZ, E., BARTON, J., BROWNING, D.,
R.L., CARTER, DAGUM, L., FATOOHI, R., FREDERICKSON,
P., LASINSKI, T., SCHREIBER, R., SIMON, H., VENKATAKR-
ISHNAN, V., AND WEERATUNGA, S. The Nas Parallel Bench-
marks. International Journal of High Performance Computing
Applications 5, 3 (1991), 63–73.

[11] BAILEY, D., HARRIS, T., SAPHIR, W., DER WIJNGAART,
R. V., WOO, A., AND YARROW, M. The NAS Parallel Bench-
marks 2.0. Tech. rep., NAS Technical Report NAS- 95-020, 1995.

[12] BUTLER, R., ENGERT, D., FOSTER, I., KESSELMAN, C.,
TUECKE, S., VOLMER, J., AND WELCH., V. A National-Scale
Authentication Infrastructure. IEEE Computer 33, 12 (2000), 60–
66.

[13] CARTER, G. LDAP system administration. O’Reilly & Asso-
ciates, Inc, 2003.

[14] COPPOLA, M., JEGOU, Y., MATTHEWS, B., MORIN, C., PRI-
ETO, L. P., SANCHEZ, O. D., YANG, E. Y., AND YU, H. Virtual
organization support within a grid-wide operating system. IEEE
Internet Computing 12, 2 (2008), 22–28.

[15] E., D. W., AND S., D. F. UNICORE: A Grid Computing Envi-
ronment. In Lecture Notes in Computer Science (Springer Berlin
/ Heidelberg, 2001), Springer, pp. 81–92.

[16] ERDOS, M., AND CANTOR, S. Shibboleth-Architecture
DRAFT v0.5. http://shibboleth.internet2.edu/docs/draft-
internet2-shibboleth-architecutre-05.pdf.

[17] FLEURY, T., BASNEY, J., AND WELCH, V. An online credential
repository for the grid: MyProxy. In Proceedings of the 3rd ACM
workshop on Secure web services (SWS’06) (2006), pp. 95–102.

[18] FOSTER, I., KESSELMAN, C., AND TUECKE, S. The anatomy
of the grid: Enabling scalable virtual organizations. Interna-
tional Journal of High Performance Computing Applications 15,
3 (2001), 200–222.

[19] HOUSLEY R., POLK W., F. W., AND SOLO, D. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile [RFC 3280], 2002.

[20] J, N., AND V, T. S. W. An online credential repository for
the grid: MyProxy. In 10th IEEE International Symposium
on High Performance Distributed Computing (HPDC-10 ’01)
(2001), pp. 104–112.

[21] JANKOWSKI, M., WOLNIEWICZ, P., AND MEYER, N. Virtual
User System for Globus Based Grids. In Proceedings of Cracow
Grid Workshop (Cracow’04) (2005), pp. 316–322.

9

[22] LAURE, E., AND HEMMER, F. Middleware for the Next Gener-
ation Grid Infrastructure. In Proceedings of Computing in High
Energy and Nuclear Physics (CHEP) (2004).

[23] MORIN, C. Xtreemos: a grid operating system making your com-
puter ready for participating in virtual organizations. In Proceed-
ings of ISORC’07 (July 2007), vol. 5, pp. 347–368.

[24] OLSON, M. A., BOSTIC, K., AND SELTZER, M. Berkeley db.
In Proceedings of 1999 USENIX Annual Technical Conference
(1999), pp. 183–192.

[25] PASHALIDIS, A., AND MITCHELL, C. A taxonomy of single
sign-on systems. In Proc. ACISP’03 (2003), pp. 249–257.

[26] ROSENBERG, J., AND REMY, D. Securing Web Services with
WS-Security: Demystifying WS-Security, WS-Policy, SAML, XML
Signature, and XML Encryption. O’Reilly & Associates, Inc,
2004.

[27] SAMAR, V. Unified login with pluggable authentication modules
(PAM). Proceedings of the 3rd ACM conference on Computer
and communications security (1996), 1–10.

[28] STEINER, J., NEUMAN, C., AND SCHILLER, J. I. Kerberos:
An authentication service for open network systems. In Proc.
USENIX Winter Conf (Feb 1988), pp. 192–202.

[29] STERN, H., EISLER, M., AND LABIAGA, R. Managing NFS
and NIS. O’Reilly & Associates, Inc, 2001.

[30] WELCH1, V., FOSTER, I., KESSELMAN, C., MULMO, O.,
PEARLMAN, L., TUECKE, S., GAWOR, J., MEDER, S., AND

SIEBENLIST, F. X.509 Proxy Certificates for Dynamic Delega-
tion. In 3rd Annual PKI R&D Workshop (2004).

[31] XTREEMOS CONSORTIUM. D2.1.2 node-level VO support spec-
ification. XtreemOS deliverable, November 2007.

[32] XTREEMOS CONSORTIUM. D3.5.4: Second Specification of Se-
curity Services. XtreemOS deliverable, November 2007.

[33] XTREEMOS CONSORTIUM. D3.5.6: Report on Formal Analysis
of Security Properties. XtreemOS deliverable, November 2007.

10

