
Truly Non-blocking Writes

Luis Useche2 Ricardo Koller2 Raju Rangaswami2

Akshat Verma1

1IBM Research, India

2School of Computing and Information Sciences
College of Engineering and Computing

HotStorage Workshop, 2011

1 / 13

Introduction

◮ Memory access granularity is smaller than disk’s

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

???
1. Write(✗)

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

???
1. Write(✗) 2. Miss

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

???
1. Write(✗) 2. Miss

3.
Issu

e

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

3.
Issu

e4. Complete

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

3.
Issu

e4. Complete

5. Return

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

3.
Issu

e4. Complete

5. Return

6. Write(✔)

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

3.
Issu

e4. Complete

5. Return

6. Write(✔)

For writes: why wait for data
that the application doesn’t
need?

2 / 13

Introduction

◮ Memory access granularity is smaller than disk’s ⇒ Writes to
an out-of-core page require a full page fetch.

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

3.
Issu

e4. Complete

5. Return

6. Write(✔)

For writes: why wait for data
that the application doesn’t
need?

2 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

???
1. Write(✗)

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

???
1. Write(✗) 2. Miss

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

???
1. Write(✗) 2. Miss

Patch

3. Buffer

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

???
1. Write(✗) 2. Miss

Patch

3. Buffer

4.
Issu

e

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

???
1. Write(✗) 2. Miss

Patch

3. Buffer

4.
Issu

e

5. Return

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

Patch

3. Buffer

4.
Issu

e

5. Return

6. Complete

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

Patch

3. Buffer

4.
Issu

e

5. Return

6. Complete

7. M
erge

3 / 13

Non-blocking Writes: Basic Approach

Process OS

Backing Store

110
101
001

1. Write(✗) 2. Miss

Patch

3. Buffer

4.
Issu

e

5. Return

6. Complete

7. M
erge

Benefits

1. Application execution time reduction

2. Increased backing store bandwidth usage

3 / 13

Motivation → Higher Fault Rates

Memory over-committed in virtualized en-
vironments

4 / 13

Motivation → Higher Fault Rates

Memory over-committed in virtualized en-
vironments

More process running with multi-core and
virtualized environments

4 / 13

Motivation → Higher Fault Rates

Memory over-committed in virtualized en-
vironments

More process running with multi-core and
virtualized environments

Memory hierarchy moving towards a more
active and faster backing store

4 / 13

Motivation → % Non-blocking faults

◮ We calculate the % of faults that can benefit in all our
workloads

5 / 13

Motivation → % Non-blocking faults

◮ We calculate the % of faults that can benefit in all our
workloads:

Image Processing Rendering of SVG images
Developer Unit and performance testing

Server Application, database, and mail server

5 / 13

Motivation → % Non-blocking faults

◮ We calculate the % of faults that can benefit in all our
workloads:

Image Processing Rendering of SVG images
Developer Unit and performance testing

Server Application, database, and mail server

◮ Simulator with full-system memory traces.

◮ RAM set to 50% of app footprint

5 / 13

Motivation → % Non-blocking faults

◮ We calculate the % of faults that can benefit in all our
workloads:

Image Processing Rendering of SVG images
Developer Unit and performance testing

Server Application, database, and mail server

◮ Simulator with full-system memory traces.

◮ RAM set to 50% of app footprint

◮ Up to 80% of page faults benefit

 0

 20

 40

 60

 80

 100

%
 N

on
-B

lo
ck

 F
au

lts

Workload

Im
ag

e
P

ro
c

D
ev

el
op

er

Ser
ve

r

5 / 13

Related Work

Alternatives to non-blocking writes:

Perfect DRAM Provision

Unpredictable or unbounded.

Prefetching

Can incur false positives and false negatives.

Asynchronous System Calls

1. Do not work with memory mapped pages

2. Written data not immediately available for reading

6 / 13

Solution Challenges

Process

7 / 13

Solution Challenges

Process

write(buf, nbytes, dest addr)

fault(dest addr)

OS call

Store Inst

7 / 13

Solution Challenges

Process

write(buf, nbytes, dest addr)

fault(dest addr)

OS call

Store Inst

patch{new buf, nbytes, dest addr}

7 / 13

Solution Challenges

Process

write(buf, nbytes, dest addr)

fault(dest addr)

OS call

Store Inst

patch{new buf, nbytes, dest addr}

Information Per Non-blocking Write

Information

Write Offset

Data Written

Size of Data

7 / 13

Solution Challenges

Process

write(buf, nbytes, dest addr)

fault(dest addr)

OS call

Store Inst

patch{new buf, nbytes, dest addr}

Information Per Non-blocking Write

Information Supervised
write()

Write Offset ✔

Data Written ✔

Size of Data ✔

7 / 13

Solution Challenges

Process

write(buf, nbytes, dest addr)

fault(dest addr)

OS call

Store Inst

patch{new buf, nbytes, dest addr}

Information Per Non-blocking Write

Information Supervised Unsupervised
write() Fault

Write Offset ✔ ✔

Data Written ✔ ✗

Size of Data ✔ ✗

7 / 13

Solution Challenges

Process

write(buf, nbytes, dest addr)

fault(dest addr)

OS call

Store Inst

patch{new buf, nbytes, dest addr}

Information Per Non-blocking Write

Information Supervised Unsupervised
write() Fault

Write Offset ✔ ✔

Data Written ✔ ✗

Size of Data ✔ ✗

7 / 13

Handling Unsupervised Writes

Approach Description Fast All Arch? Low Mem?

Full Feature Hard-
ware

fault()
✔ ✗ ✔

8 / 13

Handling Unsupervised Writes

Approach Description Fast All Arch? Low Mem?

Full Feature Hard-
ware

fault()
✔ ✗ ✔

Opcode Disassembly
sw $t1, 0xff

4 bytes

data

offset

✔ ✗ ✔

8 / 13

Handling Unsupervised Writes

Approach Description Fast All Arch? Low Mem?

Full Feature Hard-
ware

fault()
✔ ✗ ✔

Opcode Disassembly
sw $t1, 0xff

4 bytes

data

offset

✔ ✗ ✔

Page Diff-Merge

Disk Page
or 0-buffer

and 1-buffer
Updated Page

✗ ✔ ✗

8 / 13

Quantifying Benefits

1. Fraction of non-blocking write faults ✔

2. Outstanding write faults (over time)

3. Savings in execution time (new!)

Virtual Memory Simulator

Input RAM size & Full System Memory Traces

Output Performance statistics

◮ Memory size set to 50% of workloads footprint

◮ Creating patches is not required

9 / 13

Quantifying Benefits → Metric

◮ How to measure the additional parallelism?
◮ Outstanding Write Faults (OWF): # of parallel write faults

at any time
X OWF ≤ OIO
X OWF ≤ 1 for single threaded applications
X OWF ≥ 0 when using non-blocking writes

◮ We need the variations over time as well

◮ E[OWF]: time-weighted average OWF

 0

 10

 20

 30

 40

 50

E
[O

W
F

]

Workload

Im
ag

e
P

ro
c

Dev
elo

pe
r

Ser
ve

r

10 / 13

Quantifying Benefits → Time Reduction

◮ These results are not in the paper

◮ Execution time = Trace time + Synchronous read time

◮ Write time of dirty page on evictions ignored

◮ Rough estimate: error proportional to the number of dirty
pages evicted

 0

 20

 40

 60

%
 E

xe
c.

 T
im

e
D

ec
re

as
e

Workload

Im
ag

e
P

ro
c

Dev
elo

pe
r

Ser
ve

r

11 / 13

Conclusions and Future Work

◮ We presented non-blocking writes: a technique to eliminate
read-before-writes

X Reduced execution time
X Increased device usage

◮ We estimate a reduction times of 0.1-54%

◮ In the future, we are planning to implement non-blocking
writes to better study its implications

X What workloads benefit from Non-blocking writes?

12 / 13

Questions?

13 / 13

Virtual Memory Simulator

Input: RAM size & Mem Traces

Output: Per Entry: Timestamp and event (hit, miss, evict);
Global: Performance stats.

◮ Writes to out-of-core pages considered non-blocking

◮ Non-blocking status revoked when:

1. The page is read before I/O completion
2. The page is evicted before I/O completion

11 / 13

Quantifying Benefits → Full System Memory Traces

Modified x86 software-MMU QEMU to log all memory accesses:

◮ Instruction count, CR3, virtual/physical address, access-mode,
page privileges.

Workloads

Type # Footprint
Avg/Std (MB)

Server 10 294/158

Developer 4 269/183

Image 1 149/0

12 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process

Backing Store

13 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process 101
1. Write

Backing Store

13 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process 101
1. Write 111

111
111

000
000
000

Backing Store

13 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process 101
1. Write 111

101
111

000
101
000

2. Write

2. Write

Backing Store

13 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process 101
1. Write 111

101
111

000
101
000

2. Write

2. Write

Backing Store
101
110
011

3. Complete

13 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process 101
1. Write 111

101
111

000
101
000

2. Write

2. Write

Backing Store
101
110
011

3. Complete
And

101
100
011

13 / 13

Solution Approaches → Page Diff-Merge

1. Write in two pages: 0-page and 1-page.

2. Merge with and and or.

Process 101
1. Write 111

101
111

000
101
000

2. Write

2. Write

Backing Store
101
110
011

3. Complete
And

101
100
011

Or

101
101
011

13 / 13

