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◮ Simulator with full-system memory traces.

◮ RAM set to 50% of app footprint
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Related Work

Alternatives to non-blocking writes:

Perfect DRAM Provision

Unpredictable or unbounded.

Prefetching

Can incur false positives and false negatives.

Asynchronous System Calls

1. Do not work with memory mapped pages

2. Written data not immediately available for reading
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Full Feature Hard-
ware

fault()
✔ ✗ ✔

Opcode Disassembly
sw $t1, 0xff

4 bytes

data

offset

✔ ✗ ✔

Page Diff-Merge

Disk Page
or 0-buffer

and 1-buffer
Updated Page

✗ ✔ ✗
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Quantifying Benefits

1. Fraction of non-blocking write faults ✔

2. Outstanding write faults (over time)

3. Savings in execution time (new!)

Virtual Memory Simulator

Input RAM size & Full System Memory Traces

Output Performance statistics

◮ Memory size set to 50% of workloads footprint

◮ Creating patches is not required
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Quantifying Benefits → Metric

◮ How to measure the additional parallelism?
◮ Outstanding Write Faults (OWF): # of parallel write faults

at any time
X OWF ≤ OIO
X OWF ≤ 1 for single threaded applications
X OWF ≥ 0 when using non-blocking writes

◮ We need the variations over time as well

◮ E[OWF]: time-weighted average OWF
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Quantifying Benefits → Time Reduction

◮ These results are not in the paper

◮ Execution time = Trace time + Synchronous read time

◮ Write time of dirty page on evictions ignored

◮ Rough estimate: error proportional to the number of dirty
pages evicted
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Conclusions and Future Work

◮ We presented non-blocking writes: a technique to eliminate
read-before-writes

X Reduced execution time
X Increased device usage

◮ We estimate a reduction times of 0.1-54%

◮ In the future, we are planning to implement non-blocking
writes to better study its implications

X What workloads benefit from Non-blocking writes?
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Questions?
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Virtual Memory Simulator

Input: RAM size & Mem Traces

Output: Per Entry: Timestamp and event (hit, miss, evict);
Global: Performance stats.

◮ Writes to out-of-core pages considered non-blocking

◮ Non-blocking status revoked when:

1. The page is read before I/O completion
2. The page is evicted before I/O completion
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Quantifying Benefits → Full System Memory Traces

Modified x86 software-MMU QEMU to log all memory accesses:

◮ Instruction count, CR3, virtual/physical address, access-mode,
page privileges.

Workloads

Type # Footprint
Avg/Std (MB)

Server 10 294/158

Developer 4 269/183

Image 1 149/0
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