

# Adaptive Memory System over Ethernet

Jun Suzuki, Teruyuki Baba, Yoichi Hidaka<sup>†</sup>, Junichi Higuchi, Nobuharu Kami, Satoshi Uchida<sup>††</sup>, Masahiko Takahashi, Tomoyoshi Sugawara, and Takashi Yoshikawa

System Platforms Research Laboratories, NEC Corporation

†IP Network Division, NEC Corporation

†2nd Computer Software Division, NEC Corporation

# Memory Scalability in Cloud Computing

# Computer memory is limited by individually loaded resources

- Cannot scale depending on service requirements
- Service performance limited by memory
- Slow block I/O devices

Needs for scaling memory beyond individually loaded amount



# High-Performance

- Large throughput, low latency
- Avoid firmware process and memory copy to transfer data

## Networked

- Resource share among multiple computers
- Ease of management

## **Related Works**



# (A) Intel Turbo Memory

High Performance

- PCIe flash device for disk cache
- Device driver between OS and disk driver

J. Matthews *et al.*, "Intel Turbo Memory: Nonvolatile Disk Caches in the Storage Hierarchy of Mainstream Computer Systems", ACM Trans. on Storage, vol.4, no. 2, article 4, 2008.



Page 4

# (B) Remote Page Swap

Resource Share by Network

- Using memory of next machine with swapping
- Standard interconnection, e.g., Ethernet

E. P. Markatos and G. Dramitinos, "Implementation of a Reliable Remote Memory Pager", USENIX 1996 Annual Technical Conference, 1996.

# Our Method: Ethernet-Attached SSD as High-Speed Swap Device

# High-Performance AND Resource Share

Standard Ethernet, PCIe SSD



[1] J. Suzuki *et al.*, "ExpressEther – Ethernet-Based Virtualization Technology for Reconfigurable Hardware Platform", 14th IEEE Symposium on High-Performance Interconnects, pages 45-51, 2006.

## PCIe DMA over Ethernet



- ✓ No Firmware Process
- ✓ No Memory Copy

#### ■ Extending PCIe Tree over Ethernet

- PCIe packet encapsulation into Ethernet frames
- Ethernet region is PCIe switch

No Driver

## ☐ High-Speed Ethernet Transport [1]

- Delay-based congestion control
- < 8.5% of TCP-based delay

Standard Ethernet

[1] H. Shimonishi *et al.*, "A Congestion Control Algorithm for Data Center Area Communications", 2008 International CQR Workshop, 2008.

# Hot-Plug and Remove

# SSDs Assigned to Computer with VLAN Grouping

- Adaptive assignment using system manager
- PCIe-standard hot-plug and remove



## **Evaluations**

- Block I/O Performance of Ethernet-Attached SSD
- System Evaluation: In-Memory DB

# **Evaluation Setups**

#### **Proposal**



#### **Conventional**



# Block I/O Performance (IOPS) of Ethernet-Attached SSD

## Read Close to Host I/O Slot, Write Twice of TOE iSCSI

|                      | Host I/O Slot | ExpEther | iSCSI w/ TOE | iSCSI |
|----------------------|---------------|----------|--------------|-------|
| Ran. Read            | 100           | 92       | 50           | 14    |
| Ran. Write           | 100           | 74       | 42           | 14    |
| Ran. Read w/ Switch  | 100           | 91       | 46           | 14    |
| Ran. Write w/ Switch | 100           | 68       | 39           | 14    |





Page 10



(b) Random Write IOPS

## Write IOPS Overhead and Its Solution

Number of SSD's outstanding read request limited by its implementation



Increasing number of requests enhances performance close to host I/O slot



# System Evaluation: In-Memory Database

## Placing RDB File on Ramdisk

RDB: postgresql 8.1

Bench: pgbench (TPC-B-like)

CPU: Intel Core 2 Quad

OS: CentOS 5.3 (Linux 2.6.18)

Ethernet: 10GbF

16-GB Partition of Fusion IO 160 GB (Write Improve Mode)

#Client: 100

Transaction per Client: 1000



# Scaling-Up beyond Main Memory

- Maintaining performance when DB files enlarged beyond system memory
- >79% performance of all-in-memory at 4G Mem + ExpEther case



# Comparison with Conventional Protocol

## Proposal outperforms iSCSI by 139% at best case



[Note] iSCSI with TOE could not be evaluated by software bug. Calculation indicates proposal outperforms it by 21%

Page 14

# Saving CPU Resource for Transaction Processing

## High-speed swap saves CPU for user process



## Conclusion

# Adaptive Memory Expansion with Ethernet-Attached SSD as High-Speed Swap Device

- ✓ Standard Components
  - Standard Ethernet and PCle SSD
  - No software driver for Ethernet expansion
- ✓ High-Performance and Resource Share
  - PCIe DMA over Ethernet
  - Superior block-io performance than conventional protocol
  - PCle hot-plug and remove
- ✓ Proven System Merits
  - Maintains database performance beyond system memory

## **Future Works**

# Simultaneous Share of SSD among multiple computers

- PCIe I/O virtualization emerges
- Efficient resource utilization.
- High-speed data share

# Solve Performance Bottleneck of Storage and Database System

- Network storage for system availability
- Performance bottleneck by network storage