
Rethinking Deduplication Scalability

Petros Efstathopoulos, Fanglu Guo

Symantec Research Labs

June 2010

State of Deduplication

• Deduplication is maturing

– Standard feature of backup/archive systems

– Many approaches, algorithms, techniques

• Inline, offline, file level, block level, variable/fixed sized blocks, global/local
deduplication,…

– High performance deduplication solutions available

– Near-optimal usage of raw storage– Near-optimal usage of raw storage

2

State of Deduplication

• Deduplication is maturing

– Standard feature of backup/archive systems

– Many approaches, algorithms, techniques

• Inline, offline, file level, block level, variable/fixed sized blocks, global/local
deduplication,…

– High performance deduplication solutions available

– Near-optimal usage of raw storage– Near-optimal usage of raw storage

• However: scalability still a problem

– Only a few tens of TBs supported per node

• Not enough for next-generation storage systems

3

Deduplication systems optimized for deduplication efficiency

but scalability (i.e., raw supported capacity) requirements

are increasing dramatically

Challenges Scaling Up

++++

Deduplication

Metadata

“Have I seen this block before?”
(if “yes”, then where is it?)

Challenges Scaling Up

“Have I seen this block before?”

Item Scale Remarks

Raw Capacity C = 400 TB

Segment Size S = 4 KB

Num of Segments N = 100 * 109 N = C / S

Fingerprint size F >= 20 B

Block Index M = 2000 GB M = N * F

Disk Speed Z = 300 MB/sec
• Indexing Scalability Challenges

Disk Speed Z = 300 MB/sec

Lookup speed

requirement

75 Kops/sec Z / S
– System capacity bound by indexing capacity

– Resorting to larger segment sizes

– >75 K ops/sec

• Reference Management Challenges

– Scalability bound by resource reference
management and reclamation mechanism

– Deletion errors not acceptable

– Crashes possible

– >75 K reference updates

Goals

• Scalability

– 100+ billion objects with high throughput

–Willing to sacrifice some deduplication efficiency

• Performance • Performance

–Near raw disk throughput for backup and restore

–Near raw disk throughput for data deletion

–Reasonable deduplication efficiency

6

Next Generation Dedup - Indexing

• Increase supported capacity ���� Bigger segment size

– Lowers dedup efficiency/granularity – too coarse!

– Supported capacity still low (a few tens of TBs)

• “Progressive Sampled Indexing”

– Can’t fit all FPs in memory � keep 1 out of N segment FPs

• Sampling rate R = function (RAM, storage capacity, desired • Sampling rate R = function (RAM, storage capacity, desired
segment size)

• Estimate of sampling rate: R = (S * M) / (E * C) = 1 / N

– R = sampling rate

– E = bytes/entry

– C = total raw storage in TBs

– S = segment size in KBs

– M = GBs of main memory used for indexing

7

Sampling Rate

• Example: 32 bytes/entry, 4KB segments and 32GB of RAM

– No sampling (R=1) � 4 TB storage

– 400TBs of storage � R ~= 1/100 – i.e., “keep 1 out of 100 FPs”

• Supports “infinite storage” � capacity VS dedup efficiency

• Progressive sampling: used storage VS available storage

– Sampling rate = function(used storage, available RAM)

• Start with no sampling (R=1), progressively lower R, down to Rmin = (S * M) / (E * C)

• Straight sampling � poor deduplication efficiency

– 1 out of N segments deduplicatable (i.e., “hit” on index)

• Fingerprint cache: take advantage of spatial locality

– Small part of index memory: index hit � pre-fetch & cache all FPs in
container

8

Dedup Indexing: Hitting the Disk

• SRL prototype � Sampled index in memory

• Index recovery after reboot/crash � Disk Index

– Checkpointed index state – minimum necessary to resume indexing

• What if we store the index directly on disk?• What if we store the index directly on disk?

– More indexing capacity � Full(er) disk index � Better deduplication

• Disk operations too slow, bad performance

• SSDs provide interesting alternative

SSD Indexing

• Example: 32GB RAM � 128GB of SSD � x4 indexing capacity

– 32 bytes/entry ~= 4 Gentries � 4KB segment � only 16 TB storage

– With a much larger segment size of 128KB � ~512 TB

• SSD holding full index could help scalability in the short term

• SSD-based sampled indexing:• SSD-based sampled indexing:

– Better sampling rates based on SSD capacity

• x4 capacity � R’ = 4 * R = 1 / 25

– Sorted index on SSD

– All available memory used for speedup mechanisms:

• Memory “catalogue” summarizing SSD guarantees that every lookup will take at most
one SSD access (~4.8 MB of memory / GB of storage, for 20-byte FPs, 4KB SSD blocks)

• Container caching/pre-fetching

• Bloom filter

Reference Management &
Resource Reclamation:Resource Reclamation:

Grouped Mark-and-Sweep

The Problem and Challenges

• Problem: Can I delete a segment/object? Is it still in
use/pending to be used?

Challenges:

Scale: 100 billion

Reliability: No deletion error in a distributed

system - crashes possible

Speed: 75k/s reference updates

Next generation Dedup - Deletion

• Reference count

– Simple but hard to make it crash-resilient
(especially in a distributed system)

• E.g., lost or repeated count update

– Corrupted Object -> Who is using it??

• Reference list• Reference list

– Resilient to “repeated updates” but not “lost updates”

– Poor scalability & performance, variable size list needs to be stored on disk

• Mark-and-sweep (aka garbage collection)

– Workload proportional to system capacity

• 400 TB system, 4 KB segment, 20 byte FP � read 2 TB of data during mark phase
� 1.85 hours to go through once at 300 MB/second

• x10 deduplication factor ~= 20 TB � 18.5 hours

13

Next Generation Dedup –

Grouped Mark-and-Sweep

• Mark: Divide and save

– Divide backups to groups

– Track changes to the groups

– Only re-mark changed groups

– Mark results are saved and
reused if not changed

• Sweep: Track affected containers

– Only sweep containers that may have
deleted objects

• Net result:

– Workload = f (nature of work)

– Instead of system capacity

14

SO Container1 SO Container2 SO Container3 SO Container4 SO Container5

G1

G2

G1

G3

G2 G2

G3

G2

Containers to sweep

Group1 Group2 Group3

Backup1 Backup2 Backup3 Backup4 Backup5

Some DOs

are deleted

Some DOs

are added

– Instead of system capacity

Preliminary
Prototype EvaluationPrototype Evaluation

Prototype Implementation &

Preliminary Throughput Results

• Full prototype implemented in C++

– Sampled indexing, Grouped M&S, Backup management logic, etc

– Multithreaded implementation for max throughput:

• Multiple hash calculation threads, multiple backup/disk writer threads

• 3GHz Intel Xeon multicore system, 8 TB Clariion FC storage• 3GHz Intel Xeon multicore system, 8 TB Clariion FC storage

– Hardware read/write baseline: ~380/330 MB/sec

• Single thread backup: ~310 MB/sec (94% of baseline)

– CPU-bound hash calculation

• Single thread restore throughput: ~ 350 MB/sec (92% of baseline)

• Deduplication performance: up to 1180 MB/sec

– Limited by disk read performance (reading pre-fetched container indexes)

16

Preliminary Index Results

• Example: drop rate 2%, 4 KB segments, 1KB buckets, 149 Mentries capacity

X Load Drop % Insert Lookup Remove Throughput (4KB segments, 3GHz Xeon)

147 M 97 % ~ 2 % 13,101 7,620 16,836 916 / 1,575 / 713 MB/sec

• 4 VMWare image versions (10.2 GB, 2621440 * 4 KB segments):

Unique segs Total unique Optimal space Space used Achievement Diff

518326 518326 2073 2782 75%

733267 921522 3686 4508 82% MS Updates

17

• Preliminary SSD index implementation test results:

SATA SSD ioDrive

Seek time 0,24 msec 0,06 msec

Read Throughput 90 MB/sec 454 MB/sec

Cycles/lookup 138,871 55,590

Ops/sec 17,323 53,646

733267 921522 3686 4508 82% MS Updates

904579 1189230 4756 5639 84% NIS 2010

1145029 1616585 6466 7396 87% Apps

GMS Scalability Test

• Measurements: ~empty and ~full (8 TB, 2 billion objects, 4 KB segments)

• Preliminary evaluation:

– Process time is proportional to workload

– Process throughput is stable and fast regardless of capacity

• Results vary depending on underlying filesystem

18

Data Ext3 Add (time/throughput) Ext3 Remove (time/throughput)

30 GB 4.29 sec (6.99 GB/sec) 21.77 sec (1.38 GB/sec)

300 GB 39.33 sec (7.63 GB/sec) 218.77 sec (1.37 GB/sec)

990 GB 163.02 sec (6.07 GB/sec) 690.29 sec (1.43 GB/sec)

Conclusions & Future Work

• Scalable deduplication is possible

– And necessary for system management/administration

• Sampled indexing + pre-fetching works

– Scalability and throughput goals achieved

• Grouped Mark-and-Sweep: scalable reference management• Grouped Mark-and-Sweep: scalable reference management

• Work in progress and next goals:

– Comprehensive end-to-end testing with real workloads

– Testing of concurrent backups

– Distributed operation

– Complete SSD index implementation and testing

19

Thank You!

Petros Efstathopoulos

Petros_Efstathopoulos@symantec.com

Copyright © 2008 Symantec Corporation. All rights reserved. Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec Corporation or its

affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

This document is provided for informational purposes only and is not intended as advertising. All warranties relating to the information in this document, either express or implied,

are disclaimed to the maximum extent allowed by law. The information in this document is subject to change without notice.

