Block-level RAID is dead

Raja Appuswamy, David C. van Moolenbroek, Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

June 22, 2010

Traditional storage stack

• Originally one file system per disk

Later RAID layer was introduced

• Block-level RAID and Volume managers

Storage stack has remained the same for decades

• Compatibility-driven integration has fatal flaws

VFS

File system

> SW RAID

Disk driver

Problem 1: Silent data corruption

- Disks exhibit fail-partial failure modes
 - Lost, torn, misdirected writes
 - Such failures result in silent data corruption
- Checksumming algorithms fail to detect corruption
 - Most algorithms detect only a subset of all failure modes
 - Parental checksumming detects all classes of failures
- Parental checksumming fails with block-level RAID
 - RAID-initiated reads are unverified
 - RAID-initiated reads propagate corruption

Problem 2: Heterogeneity issues

- Integration of new devices is an interesting problem
- Building device-specific FS
 - Not compatible with block-based RAID
- Building a translation layer
 - Widens the "Information gap"
 - Duplication of functionality

Problem 3: Device failure

- Traditional RAID fails ungracefully
- Graceful degradation has two requirements
 - Selective metadata replication
 - Fault-isolated file placement
- Semantically unaware traditional RAID cannot fail gracefully

Problem 4: Administration nightmare

- Too many Volume management abstractions
 - PVs, VGs, LVs, FSes, etc.
 - Simple tasks need several error-prone steps
- Too many tunable parameters
 - Chunk size, stripe width, LV size, etc.
 - Improper configuration leads to bad performance
- Coarse-grained policy specification
 - Need more flexibility (per file, directory or volume)

Problem 5: System failure

- Crashes/power failures result in "Write holes"
- HW RAID uses NVRAM to sidestep this issue
- Software RAID cannot rely on NVRAM
 - Whole-disk resynchronization is impractical
 - Journaling duplicates functionality and affects performance

Loris - the new storage stack

- File-based interface between layers
 - Each file has a unique file identifier
 - Each file has a set of attributes
- File-oriented requests:

create truncate
delete getattr
read setattr
write sync

VFS Naming Cache Logical Physical Disk driver

Modular split and reliable flip (1)

Modular split and reliable flip (2)

Loris - the new storage stack

Solution to problem 1: End-to-end data integrity

- Physical layer converts fail-partial to fail-stop failures
- Physical layer verifies all requests alike
- RAID algorithms provide recovery from fail-stop failures

Solution to problem 2: Embracing heterogeneity

- Device-specific physical layers
 - Can exploit device access characteristics
 - Eliminate multiple translation steps
- RAID and Volume management across device families
 - File abstraction hides device-specific vagaries
 - No need to reimplement RAID algorithms per device family

Solution to problem 3: Graceful failure

- Directories replicated on all devices
 - Naming layer chooses RAID 1 policy
- Zero-effort fault-isolated placement

Solution to problem 3: Graceful failure

- Directories replicated on all devices
 - Naming layer chooses RAID 1 policy
- Zero-effort fault-isolated placement

Solution to problem 3: Graceful failure

- Directories replicated on all devices
 - Naming layer chooses RAID 1 policy
- Zero-effort fault-isolated placement

66% availability under two failures!

Solution to problem 4: Simplified administration

- File pools similar to storage pools
 - New device ⇒ new source of files
 - Completely automate error-prone tasks
 - "File systems/Volumes" share the file pool
- Flexible policy assignment
 - Logical layer provides mechanism
 - Any layer can assign policies
 - Policies per file, directory, or volume

Solution to problem 5: Crash recovery

- Traditional FS recovery techniques can be used
 - Journaling in physical layer (ext3)
 - Transactional COW (ZFS)
- Goal is to protect important user data
 - Metadata journaling does not help
 - Full data journaling is very expensive
 - Can we do selective data journaling?

Conclusion

- We examined block-level RAID along several dimensions
- We highlighted several fatal flaws
- We suggested a simple, yet fundamental change to the stack
- We showed how the new stack solves all issues by design