Block-level RAID is dead

Raja Appuswamy, David C. van Moolenbroek,
Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

June 22, 2010



Traditional storage stack

VFS
@ Originally one file system per disk File
system
o Later RAID layer was introduced

o Block-level RAID and Volume managers SW
RAID

Storage stack has remained the same for decades

Disk
Compatibility-driven integration has fatal flaws driver




Problem 1: Silent data corruption

@ Disks exhibit fail-partial failure modes

e Lost, torn, misdirected writes
e Such failures result in silent data corruption

@ Checksumming algorithms fail to detect corruption

o Most algorithms detect only a subset of all failure modes
e Parental checksumming detects all classes of failures

o Parental checksumming fails with block-level RAID

o RAID-initiated reads are unverified
e RAID-initiated reads propagate corruption



Problem 2: Heterogeneity issues

@ Integration of new devices is an interesting problem

@ Building device-specific FS
o Not compatible with block-based RAID

@ Building a translation layer

o Widens the “Information gap”
e Duplication of functionality



Problem 3: Device failure

@ Traditional RAID fails ungracefully
o Graceful degradation has two requirements
o Selective metadata replication

o Fault-isolated file placement

@ Semantically unaware traditional RAID cannot fail gracefully



Problem 4: Administration nightmare

@ Too many Volume management abstractions

e PVs, VGs, LVs, FSes, etc.
o Simple tasks need several error-prone steps

@ Too many tunable parameters

o Chunk size, stripe width, LV size, etc.
e Improper configuration leads to bad performance

o Coarse-grained policy specification
o Need more flexibility (per file, directory or volume)



Problem 5: System failure

o Crashes/power failures result in “Write holes”

e HW RAID uses NVRAM to sidestep this issue

@ Software RAID cannot rely on NVRAM

e Whole-disk resynchronization is impractical
e Journaling duplicates functionality and affects performance



Loris - the new storage stack
o File-based interface between layers

e Each file has a unique file identifier Naming

e Each file has a set of attributes

. . L I
o File-oriented requests:
Create truncate

delete getattr Disk
read setattr driver

write sync




Modular split and reliable flip (1)

VES

system

RAID

Disk
driver




Modular split and reliable flip (2)

VFS

----------------- X =




Loris - the new storage stack

. POSIX call processing
Namlng ——a Directory handling

Cache _ Data caching

/ RAID-like file multiplexing
Logical -~ —a Logical policy storage

—=m Metadata caching
_ = Parental checksums
On-disk layout

Physical



Solution to problem 1: End-to-end data integrity

@ Physical layer converts fail-partial to fail-stop failures
@ Physical layer verifies all requests alike

@ RAID algorithms provide recovery from fail-stop failures



Solution to problem 2: Embracing heterogeneity

@ Device-specific physical layers
o Can exploit device access characteristics
o Eliminate multiple translation steps

@ RAID and Volume management across device families

o File abstraction hides device-specific vagaries
o No need to reimplement RAID algorithms per device family



Solution to problem 3: Graceful failure

@ Directories replicated on all devices
e Naming layer chooses RAID 1 policy

@ Zero-effort fault-isolated placement

DIRECTORY FILE DIRECTORY FILE DIRECTORY FILE

FILE 1 FILE 1 FILE 2
FILE3 FILE 2 FILE3




Solution to problem 3: Graceful failure

@ Directories replicated on all devices
e Naming layer chooses RAID 1 policy

@ Zero-effort fault-isolated placement

DIRECTORY FILE DIRECTORY FILE DIRECTORY FILE

FILE 1 FILE 1 FILE 2
FILE3 FILE 2 FILE3




Solution to problem 3: Graceful failure

@ Directories replicated on all devices
e Naming layer chooses RAID 1 policy

@ Zero-effort fault-isolated placement

DIRECTORY FILE DIRECTORY FILE DIRECTORY FILE

FILE 1 FILE 1 FILE 2
FILE3 FILE 2 FILE3

66% availability under two failures!



Solution to problem 4: Simplified administration

o File pools similar to storage pools
o New device = new source of files
o Completely automate error-prone tasks
o "File systems/Volumes” share the file pool

@ Flexible policy assignment
e Logical layer provides mechanism
e Any layer can assign policies
o Policies per file, directory, or volume



Solution to problem 5: Crash recovery

@ Traditional FS recovery techniques can be used

o Journaling in physical layer (ext3)
e Transactional COW (ZFS)

o Goal is to protect important user data
e Metadata journaling does not help
e Full data journaling is very expensive
e Can we do selective data journaling?



Conclusion

@ We examined block-level RAID along several dimensions
o We highlighted several fatal flaws
@ We suggested a simple, yet fundamental change to the stack

@ We showed how the new stack solves all issues by design



