
Block-level RAID is dead

Raja Appuswamy, David C. van Moolenbroek,
Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam

June 22, 2010



Traditional storage stack

Originally one file system per disk

Later RAID layer was introduced

Block-level RAID and Volume managers

Storage stack has remained the same for decades

Compatibility-driven integration has fatal flaws
Disk

driver

SW

RAID

File

system



Problem 1: Silent data corruption

Disks exhibit fail-partial failure modes

Lost, torn, misdirected writes
Such failures result in silent data corruption

Checksumming algorithms fail to detect corruption

Most algorithms detect only a subset of all failure modes
Parental checksumming detects all classes of failures

Parental checksumming fails with block-level RAID

RAID-initiated reads are unverified
RAID-initiated reads propagate corruption



Problem 2: Heterogeneity issues

Integration of new devices is an interesting problem

Building device-specific FS

Not compatible with block-based RAID

Building a translation layer

Widens the “Information gap”
Duplication of functionality



Problem 3: Device failure

Traditional RAID fails ungracefully

Graceful degradation has two requirements

Selective metadata replication
Fault-isolated file placement

Semantically unaware traditional RAID cannot fail gracefully



Problem 4: Administration nightmare

Too many Volume management abstractions

PVs, VGs, LVs, FSes, etc.
Simple tasks need several error-prone steps

Too many tunable parameters

Chunk size, stripe width, LV size, etc.
Improper configuration leads to bad performance

Coarse-grained policy specification

Need more flexibility (per file, directory or volume)



Problem 5: System failure

Crashes/power failures result in “Write holes”

HW RAID uses NVRAM to sidestep this issue

Software RAID cannot rely on NVRAM

Whole-disk resynchronization is impractical
Journaling duplicates functionality and affects performance



Loris - the new storage stack

File-based interface between layers

Each file has a unique file identifier
Each file has a set of attributes

File-oriented requests:

create truncate
delete getattr
read setattr
write sync



Modular split and reliable flip (1)

Disk

driver

SW

RAID

File

system



Modular split and reliable flip (2)

Disk

driver

SW

RAID

File

system



Loris - the new storage stack

POSIX call processing

Directory handling

Data caching

Logical policy storage

RAID-like file multiplexing

Parental checksums

Metadata caching

On-disk layout



Solution to problem 1: End-to-end data integrity

Physical layer converts fail-partial to fail-stop failures

Physical layer verifies all requests alike

RAID algorithms provide recovery from fail-stop failures



Solution to problem 2: Embracing heterogeneity

Device-specific physical layers

Can exploit device access characteristics
Eliminate multiple translation steps

RAID and Volume management across device families

File abstraction hides device-specific vagaries
No need to reimplement RAID algorithms per device family



Solution to problem 3: Graceful failure

Directories replicated on all devices

Naming layer chooses RAID 1 policy

Zero-effort fault-isolated placement

DIRECTORY FILE

FILE 1

FILE 3

DIRECTORY FILE

FILE 1

FILE 2

DIRECTORY FILE

FILE 2

FILE 3

66% availability under two failures!



Solution to problem 3: Graceful failure

Directories replicated on all devices

Naming layer chooses RAID 1 policy

Zero-effort fault-isolated placement

DIRECTORY FILE

FILE 1

FILE 3

DIRECTORY FILE

FILE 1

FILE 2

DIRECTORY FILE

FILE 2

FILE 3

66% availability under two failures!



Solution to problem 3: Graceful failure

Directories replicated on all devices

Naming layer chooses RAID 1 policy

Zero-effort fault-isolated placement

DIRECTORY FILE

FILE 1

FILE 3

DIRECTORY FILE

FILE 1

FILE 2

DIRECTORY FILE

FILE 2

FILE 3

66% availability under two failures!



Solution to problem 4: Simplified administration

File pools similar to storage pools

New device ⇒ new source of files
Completely automate error-prone tasks
“File systems/Volumes” share the file pool

Flexible policy assignment

Logical layer provides mechanism
Any layer can assign policies
Policies per file, directory, or volume



Solution to problem 5: Crash recovery

Traditional FS recovery techniques can be used

Journaling in physical layer (ext3)
Transactional COW (ZFS)

Goal is to protect important user data

Metadata journaling does not help
Full data journaling is very expensive
Can we do selective data journaling?



Conclusion

We examined block-level RAID along several dimensions

We highlighted several fatal flaws

We suggested a simple, yet fundamental change to the stack

We showed how the new stack solves all issues by design


