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Abstract 
 
For cloud computing, computer infrastructures need to be scaled up adaptively. However, their local memories can-
not be expanded beyond the amount loaded to each computer. We present a method for scaling up of memory sys-
tem beyond its local memory’s capacity by high-speed page swapping using an adaptively attached solid-state disk 
(SSD) to a computer. Our PCI Express (PCIe) technology, “ExpEther” (Express Ether), interconnects a computer 
and a PCIe-based SSD via a standard Ethernet. The data transfer between the local memory of the computer and the 
SSD is performed without slow TCP/IP but with PCIe-standard direct memory access (DMA). It achieves IOPS of 
33-K read and 36-K write for an access of 4-KB page size, which is twice as good as that for iSCSI with TCP-
offloading. With the proposed method, a computer which only has 2-GB local physical memory can sustain its per-
formance even when a 10-GB in-memory database is loaded. 

1. Introduction 
For cloud computing, computer infrastructures need to 
provide computing resources adaptively, in accord with 
resource utilization. However, one of the most impor-
tant resources, local memory, cannot be shared among 
individual computers. This leads to a situation in which 
allocations to individual computers will be made on the 
basis of their respective needs at peak utilization times. 
This results in over-provisioning for most of their op-
erational times.  

This problem can be overcome by adaptively attaching 
external memory resources to a computer and expand 
its total memories. Some studies have reported sharing 
the local memory resources of individual computers 
using a technique of remote paging [1, 2, 3] or global 
management [4, 5]. With these methods, a bottleneck of 
the performance exists in memory management per-
formed in software, and also in communication per-
formed in such slow protocols as TCP/IP. Other studies 
have reported assigning external memory resources to a 
computer from special memory modules, for use as a 
second memory [6, 7, 8]. These methods have a poten-
tial to realize adaptive memory attachment in a rela-
tively small performance-overhead. However, it needs 
to overcome implementation hardship in software and 
hardware. For hardware, a memory module is hard to 
place in a network. And also for software, special 
treatment is necessary for such memories to hide the 
overhead of access latency over the network.  

Today, flash memories appear to hold great promise for 
complementing local memories from the access speed 
point of view [9, 10], and it is a good candidate for use 
in memory expansion. However, it usually provides 

only block access as a solid-state disk (SSD) with stan-
dardized local bus interfaces such as PCI Express 
(PCIe) and serial ATA, which are for use only inside a 
computer. 

In this paper, we follow the external memory modules 
approach, but realize high-performance adaptive mem-
ory expansion with less implementation hardship and 
evaluate its performance. In our proposed method, we 
adaptively attach a PCIe-based SSD on Ethernet to a 
computer by page swapping. The performance test re-
veals it can sustain 10GB-in-memory database for a 
computer equipped with only 2-GB local memory. 

The remainder of this paper is organized as follows. In 
Section 2, we present our method for adaptively attach-
ing an SSD to a computer for memory expansion. In 
Section 3, we discuss our experimental results. We dis-
cuss future works in Section 4 and summarize our study 
in Section 5.  

2. Attaching SSD using Ethernet 
We propose an adaptive memory system where we at-
tach a PCIe-based SSD to computers and use it for page 
swapping. This allows us to dynamically scale up com-
puter systems beyond their local memories. We adopt 
existing PCIe over Ethernet technology, “ExpEther” 
[11] which interconnects a computer and a PCIe-based 
SSD via an Ethernet. It provides two important features 
for the memory system:  

• DMA over Ethernet: We perform the data trans-
fer between the local memory of a computer and 
an SSD without TCP/IP but with PCIe-based di-
rect memory access (DMA) over an Ethernet. It 
enables us to perform high-speed IOPS in a small 



access size sutable for use in page swapping 
which is performed in 4 KB in many platforms. 

• Hot-Plug and Remove over Ethernet: By emu-
lating PCIe-compliant hot-plug and remove func-
tions over an Ethernet, we are able to adaptively 
attach SSD resources without stopping computer 
operations. 

These technologies make it possible to perform high-
speed page swapping and adaptive attachment of an 
SSD using commercially available Ethernet switches 
and PCIe-based SSDs. Although other interconnection 
technologies such as InfiniBand can perform the similar 
I/O attachment function [12], the special implementa-
tion to a host bus adaptor and an SSD is needed to adapt 
them to their high-speed interconnection specifications. 
In the following subsections, we discuss our over-
network DMA and hot-plug in detail. 

2.1. DMA over Ethernet 
Our method performs PCIe-based DMA between the 
local memory of a computer and an SSD over an 
Ethernet. Because it skips intermediate protocol proc-
essing and memory copying of the transferred data, it 
provides higher-speed data transfer over network than 
those of conventional protocols. 

To perform PCIe-based DMA over an Ethernet, Ex-
pEther provides two functions shown in Figure 1: (1) it 
extends the PCIe tree of each computer to an Ethernet, 
functioning as a PCIe switch; (2) it performs lossless, 
low-latency transmission between ExpEther bridges 
located in a computer-side and SSD-side [13]. 

Extending PCIe Tree to Ethernet: A PCIe switch is a 
device which splits a PCIe bus in order to connect a 
computer to multiple I/O devices. A pair of ExpEther 
bridges and Ethernet performs a comparable function of 
a single PCIe switch between the computer and I/O 
devices, by the emulation of response of a PCIe switch 
in ExpEther bridges. Since Ethernet transport part is 
transparent to OS, ExpEther is able to extend the PCIe 
tree of the computer to an Ethernet-attached I/O device, 
which here is an SSD, without the need for any addi-
tional device driver or OS modification. 

Lossless Low-Latency PCIe Packet Transmission: 
PCIe system assumes packet loss during transmission 
not to occur, and its performance depends on the la-
tency of PCIe paths. For these reasons, we make Ex-
pEther bridges perform lossless transmission and con-
gestion control of encapsulated PCIe packets in an end-
to-end manner. The lossless transmission function re-
sends frames lost during transmission, guaranteeing the 
transmission of frames encapsulating PCIe packets. The 
congestion control function minimizes queuing delay at 
Ethernet switches. It employs delay-based sending-rate 
control. It monitors round-trip times (RTTs) between 
ExpEther bridges and adjusts sending rates to minimize 
RTTs. The result is suppression of queuing at Ethernet  

 

 

 

 

 

 

 

 

 

 

  

switches, and minimizing transmission delay between 
the ExpEther bridges. The simulation result we reported 
in [13] showed the transmission latency of our mecha-
nism was less than 8.5% of that of TCP which adopts 
an algorithm based on packet loss. 

2.2. Hot-Plug and Remove 
Since the standard PCIe protocol mainly focuses on I/O 
buses inside a computer and it is incapable of cluster-
wide I/O resource management where several com-
puters are included in a cluster, with ExpEther, we per-
form the separate management for the allocation of I/O 
resources and their attachment to computers. The indi-
vidual computer to which a given endpoint is to be con-
nected is determined by the VLAN. As may be seen in 
Figure 2, ExpEther bridges for endpoints connecting to 
the same computer are assigned a VLAN number corre-
sponding to that computer. To change a connection for 
a given endpoint, a system manager alters the VLAN 
number assignment. 

For triggering the attachment and detachment of I/O 
resources, ExpEther bridges periodically broadcast 
keep-alive frames within individual VLAN groupings. 
When a frame broadcast by the ExpEther bridge of an 
endpoint not currently attached to a computer is re-
ceived, the receiving computer-side bridge interrupts 
the computer and begins a PCIe-compliant hot-plug 
process. By way of contrast, when no information 
frame has been received for a certain period of time, the 
computer-side ExpEther bridge interrupts the computer 
for a hot-remove process. When an interconnected SSD 
is used for a swap device, the hot-remove of an SSD 
should be performed when data is not swapped to the 
device. In an uncoordinated event, a process whose data 
is placed on the removed SSD needs to be killed and 
restarted afterward. 

3. Experimental Results and Discussion 
We performed two evaluation experiments. In the first 
experiment, we measured block I/O performance. In the  
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Figure 1. DMA data transfer using ExpEther.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

second experiment, we were able to show that a com-
puter maintains its application performance even when 
it is consuming more memory than that available at its 
local memory slots.  

The experiments were performed for the four setups 
shown in Figure 3: (a) an PCIe SSD used as a swap 
device is directly inserted to the I/O slot of a computer; 
(b) an SSD is connected to a computer by ExpEther 
(EE) bridge through DMA over Ethernet; (c) iSCSI is 
used as the interconnection protocol between a com-
puter and an SSD (at the target, the SSD is inserted into 
an I/O slot, and the initiator and the target use a net-
work interface card (NIC) with a TCP-offload engine 
(TOE)); and (d) iSCSI is used with an initiator and a 
target, employing an ordinary NIC. 

Experimental setup (a) was used to determine a baseline 
for DMA data transfer to and from an I/O inserted into 
the I/O slot of the computer. Experimental setups (c) 
and (d) were measured as a reference of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performance of conventional protocols. Table 1 sum-
marizes the specifications of the computers used in the 
experiments. The sum of the latency in the packet for-
warding of a computer-side and an SSD-side ExpEther 
bridge was 1.45μs, while the latency in the inserted 
10GbE switch was 0.92μs. Our prototype ExpEther 
bridge was implemented in a Field Programmable Gate 
Array (FPGA). 

3.1. Block I/O Performance 
We measured the block I/O performance of the SSDs 
using Iometer [14]. Figure 4 shows the IOPS perform-
ance for the four setups shown in Figure 3. Table 2 
summarizes IOPS performance for the 4-KB access 
used for data transfer in swap operations in the pro-
posed method. It also shows the results when a standard 
Ethernet switch was inserted between a computer and 
an SSD. The values are normalized to that of the direct 
insertion. Read performance with our method is nearly 

Table 2. IOPS for 4 KB access. Performance values 
are normalized to Direct Insertion. 

 (b) EE 
(c) iSCSI 
w/ TOE 

(d) iSCSI 

Ran. Read 92 50 14 
Ran. Write 74 42 14 
Ran. Read w/ Switch 91 46 14 
Ran. Write w/ Switch 68 39 14 

(a) Random Read IOPS
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Figure 4. Block I/O performance. (a) Random read 
I/O per second (IOPS). (b) Random write IOPS.

Table 1. Experimental environments. 
Experiment Block I/O Database 
CPU Intel Core 2 

2.66GHz 
Intel Core 2 Quad 
2.83GHz 

OS Cent OS 5.3 kernel-2.6.18 
Ethernet 10GbE 
SSD 16-GB partition of 160-GB Fusion IO SSD 
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Figure 3. Experimental setups. EE denotes Ex-
pEther. 
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the same as that with direct insertion (less than a 10% 
difference) and almost twice as good as that for iSCSI 
with TOE. While write performance was roughly 30% 
worse than that with direct insertion, it was still roughly 
twice as good as that for iSCSI with TOE. The per-
formance was almost the same when an Ethernet switch 
was inserted. 

The experimental results for block I/O performance 
show that our method successfully provides the benefits 
of high-speed SSD access by employing DMA data 
transfer. It also provides better performance than does a 
conventional protocol for sharing storage resources in a 
network. This is because our proposed method can skip 
protocol processing and memory copying which are 
performed by conventional protocols. 

We analyzed 30% degradation in write performance by 
monitoring the PCIe traffic between the computer and 
the SSD. We found that, in the write access, the DMA 
controller in an SSD sends up to four memory read re-
quests and waits to send the next one until it receives 
the completion. With the increase of the number of re-
quests sent by the DMA controller at one time, we 
would be able to decrease the interval and fill the link 
bandwidth with the transferred data. 

3.2. Application Performance 
In this subsection, we show how a computer is able to 
maintain its application performance even when it is 
consuming more memory than that available at its local 
memory slots. As a benchmark application, we use Re-
lational Database (RDB), with the RDB files stored in a 
ramdisk which resides in the local memory of a com-
puter to demonstrate large memory consumption. 

We used postgresql 8.1 for an RDB platform and a 
TPC-B-like pgbench [15] for a benchmark tool. We 
gradually increased the total size of RDB files which 
were placed in a ramdisk. When the total size of data-
base files exceeded the size of the local memory, por-
tions of the files began to be swapped out to a swap 
device. We performed the experiment using the SSD as  

 

 

 

 

 

 

 

 

 
 

a swap device in the previously mentioned 4 setups. 
With the setup (c) (iSCSI with TOE), unfortunately, we 
were unable to measure performance due to TOE soft-
ware failure. 

We first measured how much our method is capable of 
expanding memory. Figure 5 shows the performance of 
our method (setup (b) in Figure 3) and the HDD base 
lines for varying size of RDB files. We tested our 
method for local memory sizes of 4 and 2 GB, and the 
Ethernet-attached SSD was used as a swap device. For 
the baselines, the memory sizes were 8, 4, and 2 GB, 
and a local HDD was used as a swap device. With re-
spect to the baselines, when RDB files started to be 
swapped out to the local HDD, performance decreased 
steeply because of the low access speed of the HDD. 
With our method, there was less performance degrada-
tion, for both 2 and 4-GB local memories, when RDB 
files started to be swapped out to the SSD. The average 
swap-in and swap-out for the 10-GB file size were 100 
MB/s and 42 MB/s for the 2-GB-memory case, and 78 
MB/s and 67 MB/s for the 4-GB-memory case. The 
performance when the SSD was directly inserted to the 
I/O slot of the computer (setup (a)) was same as our 
method. These results show application performance is 
sustained with our method even when the computer is 
consuming more memory than that which is available at 
its local memory slots. The results in Figure 5 also indi-
cate the effectiveness of local memory reduction. For 6-
GB RDB files, performance results achieved with our 
method in the 4-GB local memory case (33% memory 
reduction) were only 13% worse than those for the 8-
GB baseline, and our results for the 2-GB case (66% 
reduction) were only 27% worse. 

We next measured how much our method outperformed 
a conventional protocol in the sharing of storage re-
sources in a network. Figure 6 shows the performance 
of our method and that of iSCSI (setup(d)). In the best 
cases, our method outperformed iSCSI by 113% with a 
4-GB local memory and by 139% with a 2-GB local 
memory. These differences result from differences in 
data transfer methods. Our method uses DMA data 
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transfer over an Ethernet, while iSCSI requires protocol 
processing and memory copying in order to transfer 
data. Although, as has previously been noted, we were 
unable to obtain performance results for iSCSI with 
TOE, the calculated results showed the performances 
for the case of iSCSI with TOE for the 10-GB file size 
were 1711 transactions per sec. for 4-GB local memory 
and 1541 transactions per sec. for 2-GB memory. In the 
calculation, we supposed that the expected number of 
accesses to the SSD per transaction was same among 
different setups and used the relative block I/O per-
formances illustrated in Figure 4 to estimate the 
pgbench performance of iSCSI with TOE by the results 
of ExpEther and iSCSI. 

The merits of memory expansion with the proposed 
method are also apparent from the standpoint of CPU 
utilization. Figure 7 shows CPU utilization levels with 
respect to cases when the local memory was set to 4 
and 2 GB, and the Ethernet-attached SSD was used as a 
swap device. It also shows the case of the baseline with 
the memory size of 8 GB. The results shown here are 
for 10-GB RDB files and indicate that, with the pro-
posed method, the CPU time was spent for application 
processing. On the other hand, in the 8-GB-memory 
baseline case, most of the CPU time is spent waiting for 
the completion of I/O requests for swap operations. 

4. Future Works 
In our work, we attach an SSD to a single computer and 
it is exclusively used by its computer. Ethernet-
connected SSD resources should be shared among mul-
tiple computers for efficient hardware utilization. This 
would be enabled by using recently standardized PCIe 
I/O virtualization where an I/O device can process mul-
tiple contexts [16]. Also, we use one SSD for a swap 
device. Multiple devices could be used to increase the 
capacity and reliability. The multiple devices can be 
coordinated at device driver level using a RAID method 
or at OS level to coordinate data placement and I/O 
device assignment. 

5. Conclusion 
In this paper, we have presented adaptive memory sys-
tem. It attaches a PCIe-based SSD to a computer over 
Ethernet by page swapping to scale it up beyond its 
local memories. The proposed system with our Ex-

pEther technology enables high-speed page swapping 
and adaptive attachment of an SSD using commercially 
available Ethernet switches and PCIe-based SSDs. The 
block I/O performance is twice as good as that for 
iSCSI with TOE, which indicates higher speed swap-
ping than conventional protocols. Further, application 
benchmark of a database shows we can sustain the per-
formance when 10-GB in-memory database is loaded to 
a computer equipped with only 2-GB memory. These 
evaluation results show we can realize both high-
performance adaptive memory expansion and less im-
plementation hardship with our proposed method. 
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