
Adaptive Memory System over Ethernet

Jun Suzuki, Teruyuki Baba, Yoichi Hidaka†, Junichi Higuchi, Nobuharu Kami,
Satoshi Uchida††, Masahiko Takahashi, Tomoyoshi Sugawara, and Takashi Yoshikawa

System Platforms Research Laboratories, NEC Corporation †IP Network Division, NEC Corporation

††2nd Computers Software Division, NEC Corporation
{j-suzuki@ax, t-baba@ax, y-hidaka@bq, j-higuchi@ax, n-kami@ak, s-uchida@ap, m-takahashi@ex,

tom-sugawara@ap, yoshikawa@cd}.jp.nec.com

Abstract

For cloud computing, computer infrastructures need to be scaled up adaptively. However, their local memories can-
not be expanded beyond the amount loaded to each computer. We present a method for scaling up of memory sys-
tem beyond its local memory’s capacity by high-speed page swapping using an adaptively attached solid-state disk
(SSD) to a computer. Our PCI Express (PCIe) technology, “ExpEther” (Express Ether), interconnects a computer
and a PCIe-based SSD via a standard Ethernet. The data transfer between the local memory of the computer and the
SSD is performed without slow TCP/IP but with PCIe-standard direct memory access (DMA). It achieves IOPS of
33-K read and 36-K write for an access of 4-KB page size, which is twice as good as that for iSCSI with TCP-
offloading. With the proposed method, a computer which only has 2-GB local physical memory can sustain its per-
formance even when a 10-GB in-memory database is loaded.

1. Introduction
For cloud computing, computer infrastructures need to
provide computing resources adaptively, in accord with
resource utilization. However, one of the most impor-
tant resources, local memory, cannot be shared among
individual computers. This leads to a situation in which
allocations to individual computers will be made on the
basis of their respective needs at peak utilization times.
This results in over-provisioning for most of their op-
erational times.

This problem can be overcome by adaptively attaching
external memory resources to a computer and expand
its total memories. Some studies have reported sharing
the local memory resources of individual computers
using a technique of remote paging [1, 2, 3] or global
management [4, 5]. With these methods, a bottleneck of
the performance exists in memory management per-
formed in software, and also in communication per-
formed in such slow protocols as TCP/IP. Other studies
have reported assigning external memory resources to a
computer from special memory modules, for use as a
second memory [6, 7, 8]. These methods have a poten-
tial to realize adaptive memory attachment in a rela-
tively small performance-overhead. However, it needs
to overcome implementation hardship in software and
hardware. For hardware, a memory module is hard to
place in a network. And also for software, special
treatment is necessary for such memories to hide the
overhead of access latency over the network.

Today, flash memories appear to hold great promise for
complementing local memories from the access speed
point of view [9, 10], and it is a good candidate for use
in memory expansion. However, it usually provides

only block access as a solid-state disk (SSD) with stan-
dardized local bus interfaces such as PCI Express
(PCIe) and serial ATA, which are for use only inside a
computer.

In this paper, we follow the external memory modules
approach, but realize high-performance adaptive mem-
ory expansion with less implementation hardship and
evaluate its performance. In our proposed method, we
adaptively attach a PCIe-based SSD on Ethernet to a
computer by page swapping. The performance test re-
veals it can sustain 10GB-in-memory database for a
computer equipped with only 2-GB local memory.

The remainder of this paper is organized as follows. In
Section 2, we present our method for adaptively attach-
ing an SSD to a computer for memory expansion. In
Section 3, we discuss our experimental results. We dis-
cuss future works in Section 4 and summarize our study
in Section 5.

2. Attaching SSD using Ethernet
We propose an adaptive memory system where we at-
tach a PCIe-based SSD to computers and use it for page
swapping. This allows us to dynamically scale up com-
puter systems beyond their local memories. We adopt
existing PCIe over Ethernet technology, “ExpEther”
[11] which interconnects a computer and a PCIe-based
SSD via an Ethernet. It provides two important features
for the memory system:

• DMA over Ethernet: We perform the data trans-
fer between the local memory of a computer and
an SSD without TCP/IP but with PCIe-based di-
rect memory access (DMA) over an Ethernet. It
enables us to perform high-speed IOPS in a small

access size sutable for use in page swapping
which is performed in 4 KB in many platforms.

• Hot-Plug and Remove over Ethernet: By emu-
lating PCIe-compliant hot-plug and remove func-
tions over an Ethernet, we are able to adaptively
attach SSD resources without stopping computer
operations.

These technologies make it possible to perform high-
speed page swapping and adaptive attachment of an
SSD using commercially available Ethernet switches
and PCIe-based SSDs. Although other interconnection
technologies such as InfiniBand can perform the similar
I/O attachment function [12], the special implementa-
tion to a host bus adaptor and an SSD is needed to adapt
them to their high-speed interconnection specifications.
In the following subsections, we discuss our over-
network DMA and hot-plug in detail.

2.1. DMA over Ethernet
Our method performs PCIe-based DMA between the
local memory of a computer and an SSD over an
Ethernet. Because it skips intermediate protocol proc-
essing and memory copying of the transferred data, it
provides higher-speed data transfer over network than
those of conventional protocols.

To perform PCIe-based DMA over an Ethernet, Ex-
pEther provides two functions shown in Figure 1: (1) it
extends the PCIe tree of each computer to an Ethernet,
functioning as a PCIe switch; (2) it performs lossless,
low-latency transmission between ExpEther bridges
located in a computer-side and SSD-side [13].

Extending PCIe Tree to Ethernet: A PCIe switch is a
device which splits a PCIe bus in order to connect a
computer to multiple I/O devices. A pair of ExpEther
bridges and Ethernet performs a comparable function of
a single PCIe switch between the computer and I/O
devices, by the emulation of response of a PCIe switch
in ExpEther bridges. Since Ethernet transport part is
transparent to OS, ExpEther is able to extend the PCIe
tree of the computer to an Ethernet-attached I/O device,
which here is an SSD, without the need for any addi-
tional device driver or OS modification.

Lossless Low-Latency PCIe Packet Transmission:
PCIe system assumes packet loss during transmission
not to occur, and its performance depends on the la-
tency of PCIe paths. For these reasons, we make Ex-
pEther bridges perform lossless transmission and con-
gestion control of encapsulated PCIe packets in an end-
to-end manner. The lossless transmission function re-
sends frames lost during transmission, guaranteeing the
transmission of frames encapsulating PCIe packets. The
congestion control function minimizes queuing delay at
Ethernet switches. It employs delay-based sending-rate
control. It monitors round-trip times (RTTs) between
ExpEther bridges and adjusts sending rates to minimize
RTTs. The result is suppression of queuing at Ethernet

switches, and minimizing transmission delay between
the ExpEther bridges. The simulation result we reported
in [13] showed the transmission latency of our mecha-
nism was less than 8.5% of that of TCP which adopts
an algorithm based on packet loss.

2.2. Hot-Plug and Remove
Since the standard PCIe protocol mainly focuses on I/O
buses inside a computer and it is incapable of cluster-
wide I/O resource management where several com-
puters are included in a cluster, with ExpEther, we per-
form the separate management for the allocation of I/O
resources and their attachment to computers. The indi-
vidual computer to which a given endpoint is to be con-
nected is determined by the VLAN. As may be seen in
Figure 2, ExpEther bridges for endpoints connecting to
the same computer are assigned a VLAN number corre-
sponding to that computer. To change a connection for
a given endpoint, a system manager alters the VLAN
number assignment.

For triggering the attachment and detachment of I/O
resources, ExpEther bridges periodically broadcast
keep-alive frames within individual VLAN groupings.
When a frame broadcast by the ExpEther bridge of an
endpoint not currently attached to a computer is re-
ceived, the receiving computer-side bridge interrupts
the computer and begins a PCIe-compliant hot-plug
process. By way of contrast, when no information
frame has been received for a certain period of time, the
computer-side ExpEther bridge interrupts the computer
for a hot-remove process. When an interconnected SSD
is used for a swap device, the hot-remove of an SSD
should be performed when data is not swapped to the
device. In an uncoordinated event, a process whose data
is placed on the removed SSD needs to be killed and
restarted afterward.

3. Experimental Results and Discussion
We performed two evaluation experiments. In the first
experiment, we measured block I/O performance. In the

PCIe bus

MemoryMemory

EthernetEthernet

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

Host
Bridge
Host

Bridge

(2) Loss-Less
Transmission
and Congestion-Control

Computer

ExpEther
Bridge

ExpEther
Bridge

(1) Extending PCIe Tree
with PCIe Switch Function

PCIe bus DMA Data
Transfer

CPUCPU

SSD BSSD BSSD ASSD A

PCIe bus

MemoryMemory

EthernetEthernet

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

Host
Bridge
Host

Bridge

(2) Loss-Less
Transmission
and Congestion-Control

Computer

ExpEther
Bridge

ExpEther
Bridge

(1) Extending PCIe Tree
with PCIe Switch Function

PCIe bus DMA Data
Transfer

CPUCPU

SSD BSSD BSSD ASSD A

Figure 1. DMA data transfer using ExpEther.

second experiment, we were able to show that a com-
puter maintains its application performance even when
it is consuming more memory than that available at its
local memory slots.

The experiments were performed for the four setups
shown in Figure 3: (a) an PCIe SSD used as a swap
device is directly inserted to the I/O slot of a computer;
(b) an SSD is connected to a computer by ExpEther
(EE) bridge through DMA over Ethernet; (c) iSCSI is
used as the interconnection protocol between a com-
puter and an SSD (at the target, the SSD is inserted into
an I/O slot, and the initiator and the target use a net-
work interface card (NIC) with a TCP-offload engine
(TOE)); and (d) iSCSI is used with an initiator and a
target, employing an ordinary NIC.

Experimental setup (a) was used to determine a baseline
for DMA data transfer to and from an I/O inserted into
the I/O slot of the computer. Experimental setups (c)
and (d) were measured as a reference of the

performance of conventional protocols. Table 1 sum-
marizes the specifications of the computers used in the
experiments. The sum of the latency in the packet for-
warding of a computer-side and an SSD-side ExpEther
bridge was 1.45μs, while the latency in the inserted
10GbE switch was 0.92μs. Our prototype ExpEther
bridge was implemented in a Field Programmable Gate
Array (FPGA).

3.1. Block I/O Performance
We measured the block I/O performance of the SSDs
using Iometer [14]. Figure 4 shows the IOPS perform-
ance for the four setups shown in Figure 3. Table 2
summarizes IOPS performance for the 4-KB access
used for data transfer in swap operations in the pro-
posed method. It also shows the results when a standard
Ethernet switch was inserted between a computer and
an SSD. The values are normalized to that of the direct
insertion. Read performance with our method is nearly

Table 2. IOPS for 4 KB access. Performance values
are normalized to Direct Insertion.

 (b) EE
(c) iSCSI
w/ TOE

(d) iSCSI

Ran. Read 92 50 14
Ran. Write 74 42 14
Ran. Read w/ Switch 91 46 14
Ran. Write w/ Switch 68 39 14

(a) Random Read IOPS

0

10000

20000

30000

40000

50000

512 4K 16K 32K 64K 256K 1M 4M

Access Size

IO
P
S

Direct Insertion

EE

iSCSI with TOE

iSCSI

(b) Random Write IOPS

0

10000

20000

30000

40000

50000

60000

512 4K 16K 32K 64K 256K 1M 4M

Access Size
IO

P
S

Direct Insertion

EE

iSCSI with TOE

iSCSI

Figure 4. Block I/O performance. (a) Random read
I/O per second (IOPS). (b) Random write IOPS.

Table 1. Experimental environments.
Experiment Block I/O Database
CPU Intel Core 2

2.66GHz
Intel Core 2 Quad
2.83GHz

OS Cent OS 5.3 kernel-2.6.18
Ethernet 10GbE
SSD 16-GB partition of 160-GB Fusion IO SSD

(a) Direct Insertion
into I/O Slot of Computer

SSDSSD

Computer

(b) EE

EE
Bridge

EE
Bridge

(c) iSCSI with TOE

(d) iSCSI

SSDSSD

Initiator

TOE
NIC

TOE
NIC

Target

SSDSSD

EE
Bridge

EE
Bridge

Computer

TOE
NIC

TOE
NIC

Initiator

NICNIC

Target

SSDSSDNICNIC

(a) Direct Insertion
into I/O Slot of Computer

SSDSSD

Computer

(b) EE

EE
Bridge

EE
Bridge

(c) iSCSI with TOE

(d) iSCSI

SSDSSD

Initiator

TOE
NIC

TOE
NIC

Target

SSDSSD

EE
Bridge

EE
Bridge

Computer

TOE
NIC

TOE
NIC

Initiator

NICNIC

Target

SSDSSDNICNIC

Figure 3. Experimental setups. EE denotes Ex-
pEther.

Computer
A

ExpEther
Bridge

ExpEther
Bridge

EthernetEthernet

Computer
B

Computer
C

System
Manager

VLAN 1 VLAN 2

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

Endpoint
A

Endpoint
B

Endpoint
C

Computer
A

ExpEther
Bridge

ExpEther
Bridge

EthernetEthernet

Computer
B

Computer
C

System
Manager

VLAN 1 VLAN 2

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

Endpoint
A

Endpoint
B

Endpoint
C

Figure 2. Grouping endpoints among VLANs.

the same as that with direct insertion (less than a 10%
difference) and almost twice as good as that for iSCSI
with TOE. While write performance was roughly 30%
worse than that with direct insertion, it was still roughly
twice as good as that for iSCSI with TOE. The per-
formance was almost the same when an Ethernet switch
was inserted.

The experimental results for block I/O performance
show that our method successfully provides the benefits
of high-speed SSD access by employing DMA data
transfer. It also provides better performance than does a
conventional protocol for sharing storage resources in a
network. This is because our proposed method can skip
protocol processing and memory copying which are
performed by conventional protocols.

We analyzed 30% degradation in write performance by
monitoring the PCIe traffic between the computer and
the SSD. We found that, in the write access, the DMA
controller in an SSD sends up to four memory read re-
quests and waits to send the next one until it receives
the completion. With the increase of the number of re-
quests sent by the DMA controller at one time, we
would be able to decrease the interval and fill the link
bandwidth with the transferred data.

3.2. Application Performance
In this subsection, we show how a computer is able to
maintain its application performance even when it is
consuming more memory than that available at its local
memory slots. As a benchmark application, we use Re-
lational Database (RDB), with the RDB files stored in a
ramdisk which resides in the local memory of a com-
puter to demonstrate large memory consumption.

We used postgresql 8.1 for an RDB platform and a
TPC-B-like pgbench [15] for a benchmark tool. We
gradually increased the total size of RDB files which
were placed in a ramdisk. When the total size of data-
base files exceeded the size of the local memory, por-
tions of the files began to be swapped out to a swap
device. We performed the experiment using the SSD as

a swap device in the previously mentioned 4 setups.
With the setup (c) (iSCSI with TOE), unfortunately, we
were unable to measure performance due to TOE soft-
ware failure.

We first measured how much our method is capable of
expanding memory. Figure 5 shows the performance of
our method (setup (b) in Figure 3) and the HDD base
lines for varying size of RDB files. We tested our
method for local memory sizes of 4 and 2 GB, and the
Ethernet-attached SSD was used as a swap device. For
the baselines, the memory sizes were 8, 4, and 2 GB,
and a local HDD was used as a swap device. With re-
spect to the baselines, when RDB files started to be
swapped out to the local HDD, performance decreased
steeply because of the low access speed of the HDD.
With our method, there was less performance degrada-
tion, for both 2 and 4-GB local memories, when RDB
files started to be swapped out to the SSD. The average
swap-in and swap-out for the 10-GB file size were 100
MB/s and 42 MB/s for the 2-GB-memory case, and 78
MB/s and 67 MB/s for the 4-GB-memory case. The
performance when the SSD was directly inserted to the
I/O slot of the computer (setup (a)) was same as our
method. These results show application performance is
sustained with our method even when the computer is
consuming more memory than that which is available at
its local memory slots. The results in Figure 5 also indi-
cate the effectiveness of local memory reduction. For 6-
GB RDB files, performance results achieved with our
method in the 4-GB local memory case (33% memory
reduction) were only 13% worse than those for the 8-
GB baseline, and our results for the 2-GB case (66%
reduction) were only 27% worse.

We next measured how much our method outperformed
a conventional protocol in the sharing of storage re-
sources in a network. Figure 6 shows the performance
of our method and that of iSCSI (setup(d)). In the best
cases, our method outperformed iSCSI by 113% with a
4-GB local memory and by 139% with a 2-GB local
memory. These differences result from differences in
data transfer methods. Our method uses DMA data

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12

Total Size of RDB Files [GB]

T
ra

n
sa

c
ti
on

 p
er

 S
ec

.

Mem 4G + EE

Mem 2G + EE

Mem 4G + iSCSI
Mem 2G + iSCSI

Figure 6. pgbench performance for EE and iSCSI.

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12

Total Size of RDB Files [GB]

T
ra

ns
ac

ti
on

 p
er

 S
e
c.

4G Mem + EE (SSD)

2G Mem + EE (SSD)

8G Mem (HDD)

4G Mem (HDD)

2G Mem (HDD)

Figure 5. pgbench performance.

transfer over an Ethernet, while iSCSI requires protocol
processing and memory copying in order to transfer
data. Although, as has previously been noted, we were
unable to obtain performance results for iSCSI with
TOE, the calculated results showed the performances
for the case of iSCSI with TOE for the 10-GB file size
were 1711 transactions per sec. for 4-GB local memory
and 1541 transactions per sec. for 2-GB memory. In the
calculation, we supposed that the expected number of
accesses to the SSD per transaction was same among
different setups and used the relative block I/O per-
formances illustrated in Figure 4 to estimate the
pgbench performance of iSCSI with TOE by the results
of ExpEther and iSCSI.

The merits of memory expansion with the proposed
method are also apparent from the standpoint of CPU
utilization. Figure 7 shows CPU utilization levels with
respect to cases when the local memory was set to 4
and 2 GB, and the Ethernet-attached SSD was used as a
swap device. It also shows the case of the baseline with
the memory size of 8 GB. The results shown here are
for 10-GB RDB files and indicate that, with the pro-
posed method, the CPU time was spent for application
processing. On the other hand, in the 8-GB-memory
baseline case, most of the CPU time is spent waiting for
the completion of I/O requests for swap operations.

4. Future Works
In our work, we attach an SSD to a single computer and
it is exclusively used by its computer. Ethernet-
connected SSD resources should be shared among mul-
tiple computers for efficient hardware utilization. This
would be enabled by using recently standardized PCIe
I/O virtualization where an I/O device can process mul-
tiple contexts [16]. Also, we use one SSD for a swap
device. Multiple devices could be used to increase the
capacity and reliability. The multiple devices can be
coordinated at device driver level using a RAID method
or at OS level to coordinate data placement and I/O
device assignment.

5. Conclusion
In this paper, we have presented adaptive memory sys-
tem. It attaches a PCIe-based SSD to a computer over
Ethernet by page swapping to scale it up beyond its
local memories. The proposed system with our Ex-

pEther technology enables high-speed page swapping
and adaptive attachment of an SSD using commercially
available Ethernet switches and PCIe-based SSDs. The
block I/O performance is twice as good as that for
iSCSI with TOE, which indicates higher speed swap-
ping than conventional protocols. Further, application
benchmark of a database shows we can sustain the per-
formance when 10-GB in-memory database is loaded to
a computer equipped with only 2-GB memory. These
evaluation results show we can realize both high-
performance adaptive memory expansion and less im-
plementation hardship with our proposed method.

Acknowledgements
We would like to thank Y. Hasebe, H. Shimamoto, and
K. Egarashi for their helpful suggestions. We also thank
K. M. Fujita for his cooperation to experiment. This
work was partly supported by Ministry of Internal Af-
fairs and Communications (MIC).

Reference
[1] L. Iftode et al., “Memory Servers for Multicomputers”,

Compcon Spring ’93, pp 538-547, 1993.
[2] E. P. Markatos et al., “Implementation of a Reliable Re-

mote Memory Pager”, USENIX ATC.1996.
[3] T. Newhall et al., “Nswap: A Network Swapping Module

for Linux Clusters”, Euro-Par 2003 Parallel Processing,
vol. 2790, pp 1160-1169, 2004.

[4] M. D. Dahlin et al., “Cooperative Caching: Using Re-
mote Client Memory to Improve File System Perform-
ance”, USENIX OSDI, no. 19, 1994.

[5] H. A. Jamrozik et al., “Reducing Network Latency Using
Subpages in a Global Memory Environment”, ASPLOS-7,
pp 258-267, 1996.

[6] K. Lim et al., “Disaggregated Memory for Expansion
and Sharing in Blade Servers”, ISCA-36, pp 267-278,
2009.

[7] K. Li et al., “Evaluation of Memory System Extensions”,
ISCA-18, pp 84-93, 1991.

[8] M. Ekman et al., “A Cost-Effective Main Memory Or-
ganization for Future Servers”, IEEE IPDPS’05.

[9] T. Kgil et al., “FlashCache: A NAND Flash Memory
File Cache for Low Power Web Servers”, CASES 2006,
pp 103-112, 2006.

[10] Intel Turbo Memory with User Pinning,
http://www.intel.com/design/flash/nand/turbomemory/

[11] J. Suzuki et al., “ExpressEther – Ethernet-Based Virtual-
ization Technology for Reconfigurable Hardware”, IEEE
HOTI’06 , pp 45-51, 2006.

[12] InfiniBand Architecture Specification, Release 1.1.
[13] H. Shimonishi et al., “A Congestion Control Algorithm

for Data Center Area Communications”, 2008 Int. CQR
Workshop.

[14] Iometer project: http://www.iometer.org/
[15] pgbench, http://www.postgresql.org/docs/current/

interactive/pgbench.html
[16] “Single Root I/O Virtualization and Sharing Specifica-

tion Revision 1.1”, PCI-SIG, 2010.

0
20
40
60
80

100

Mem
4G +
EE

Mem
2G +
EE

Mem
8G

Mem
4G +
EE

Mem
2G +
EE

Mem
8G

6G 10G

Total Size of RDB Files [GB]

C
P

U
 U

ti
l.

[%
] software irq

hardware irq

wait
nice

system

user

Figure 7. CPU utilization with pgbench.

