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Abstract

Depletable storage systems use media such as NAND
flash that has a limited lifetime, which decreases with
more usage. Such systems treat write cycles, in addi-
tion to space, as a constrained resource of the system.
Depletable storage systems must be equipped to monitor
writes, attribute depletion to appropriate applications,
and even control the rate of depletion. We outline the
new functionalities enabled by depletion-aware mecha-
nisms and discuss the challenges in building them.

1 Introduction

We have traditionally built storage systems that treat
space as their primary resource constraint. The notion
of “quota” typically applies to a fixed amount of storage
that is allocated to a user. Recent cloud-based storage
services charge users based on the amount of data stored
and how long they are used for [2, 10]. Even in peer-to-
peer storage systems, space is the primary consideration
for fairness; for example, past research has focused on
how to ensure fair storage consumption among the users
of peer-to-peer storage systems [4].

However, with the emergence of non-volatile memory
technologies such as NAND and NOR-based flash and
phase change memory (PCM), treating space as the only
limited resource of a storage system portrays an incom-
plete picture. NAND-based flash memory has certain
unique limitations: first, a block must be erased before
it is overwritten; second, a flash block becomes unus-
able after a finite number of erasures because of high
raw bit error rate. Therefore, an SSD as a whole can ac-
commodate only a fixed number of writes, before it runs
out of write cycles, which are the raw physical writes
that can be issued to the media. We call such a system,
which uses storage media with limited write cycles, a de-
pletable storage system.

We propose that a depletable storage system must con-
sider write cycles, in addition to the storage space, as a

constrained resource. Specifically, storage systems must
be equipped with depletion-aware mechanisms to moni-
tor the depletion caused by writes, attribute depletion to
specific users or applications, and even limit the level or
rate of depletion.

Building depletion-aware systems enables new func-
tionalities in the context of depletable storage. For exam-
ple, tracking the depletion caused by writes enables pre-
dictable device replacement schedules, which can reduce
administrative costs and improve overall system avail-
ability. By attributing depletion to appropriate applica-
tions, cloud storage providers can charge users not only
based on their space usage but also based on their write
cycle consumption. Controlling the depletion caused by
writes can prevent a buggy or even a malicious applica-
tion from consuming more write cycles than it is allowed.
We discuss these applications and others later, in detail.

Treating depletion as a first-class concern in modern
storage systems is non-trivial. First, file and storage sys-
tems consist of several diverse layers, such as the buffer
cache and I/O scheduler, each of which can delay, re-
order, coalesce or fragment writes, causing the resulting
depletion of the underlying media to be either amplified
and reduced. In addition, writes not only traverse several
software layers, but also hardware logic such as RAID
controllers and device firmware. Ideally, any solution
to keep track of depletion must transcend all the storage
layers; however, such pervasive solutions are impractical
given the variety of storage devices and vendors.

Second, even under identical conditions, different
workloads consume varying amounts of write cycles. In
this paper, we show that random workloads can consume
as much as 5 times more write cycles on a commodity
SSD than sequential workloads. Given a mix of applica-
tions concurrently issuing writes, it is not straightforward
to compute the resulting write pattern or the write cycles
consumed on the device.

Lastly, depletable storage systems are likely to use dif-
ferent types of memory with vastly different lifetime,



performance, and cost characteristics. For example,
MLC-based flash has a lower cost per GB compared to
SLC-based flash, but due to the limited number of era-
sures it can tolerate, MLC has a higher cost per write
cycle. Consequently, depletion on an MLC-based device
cannot be treated as equivalent to depletion on an SLC-
based device.

2 Depletable Storage

A depletable storage system uses media whose lifetime
decreases with more usage. An important aspect of de-
pletable storage is that its lifetime must be related to the
write load imposed on it in measureable and predictable
ways. Even though hard disk drives have a limited life-
time, it is hard to measure, predict, or even relate the
lifetime to the workload.

2.1 Background
2.1.1 What Causes Depletion?

The underlying physical properties of certain storage
technologies dictate that only a limited number of writes
can be issued to the memory cells.

In NAND and NOR-based flash, when a write is is-
sued, flash memory stores the charges inside the transis-
tor gates of a block. A block can be overwritten only after
flushing the pre-existing charges by a process known as
an erasure. Erasing a flash block requires a large voltage
to remove the electrons trapped inside the floating gates.
Such high voltages can cause degradation, limiting the
number of erasures and therefore, the number of writes
that can be issued to the media.

Other memory technologies, such as phase change
memory (PCM), can also degrade with more use, al-
though for different reasons. PCM does not require an
erasure before an overwrite and can sustain up to 100
million write cycles. Since PCM is considered a potential
replacement for main memory, even such high write cy-
cles may be consumed by the proportionally large num-
ber of store operations. Although PCM exhibits simi-
lar issues, in this paper we focus primarily on flash mem-
ory based systems.

2.1.2 Ideal Write-Lifetime

Given the size and other parameters of an SSD and
an ideal workload that writes perfectly sequentially, it
is straightforward to compute the relationship between
writes sent to the device and the write cycles used up on
it. Based on this relationship, we can estimate the ideal,
total amount of data that can be written before the device
stops accepting new writes; we call this the ideal write-
lifetime of a device. For example, a 80 GB SSD with 5K

erasure cycles can theoretically support about 400 TB
(5000 times 80 GB) of data writes, which is its ideal
write-lifetime. However in reality, the write-lifetime of a
device can be much smaller than its ideal write-lifetime
due to several factors.

A primary reason for reduced lifetime is write amplifi-
cation caused by the Flash Translation Layer (FTL). Sim-
ple block-mapped FTLs use more write cycles for a given
workload since they naively erase an entire block when
writing to a part of it, performing a read-modify-erase-
write operation. More sophisticated FTLs save write cy-
cles by appending writes to the end of a log [5]. As a
result, the number of write cycles used by a write may
depend on the workload and firmware in complex ways.

FTLs also employ more complex background tasks
such as cleaning and wear-leveling. Cleaning generates
free flash blocks by moving valid pages together; wear-
leveling ensures all the flash blocks are used uniformly
by swapping blocks containing cold and hot data [1].
Such operations may consume write cycles even when
there are no workloads running in the system.

2.2  Write-Lifetime in Practice

As explained above, even though the ideal write-lifetime
can be calculated trivially, the real write-lifetime of an
SSD is hard to estimate because of FTL idiosyncrasies.
To address this issue, SSD manufacturers have proposed
various endurance metrics as a way to gauge the lifetime
of an SSD. For example, SanDisk’s longterm data en-
durance (LDE) defines the total amount of data writes al-
lowed in an SSD lifespan (assuming a specific workload
pattern) [13]. Similarly, the Intel X25-M SSD [8] exports
a “Media Wearout Indicator” (counter ID 0xE9), which
reports the number of write cycles used by the media [7].
This attribute is initialized to 100 when the device is new;
as writes are issued and more erasures are performed,
the counter drops in decrements of 1; it finally reaches 1
when the maximum rated erase cycles are used.

Although additional wear can be put on the Intel X25-
M after the counter reaches 1, it is unclear if the device
is guaranteed to remain reliable. For the purpose of this
work, we assume that the device is worn out when the
media wearout indicator reaches 1. The rate at which this
attribute decreases depends upon several factors such as
caching and workload access patterns.

2.2.1 Media Wearout With and Without Caching

Our first experiment was to measure the impact of work-
load and caching on the write-lifetime of an Intel X25-
M SSD. Although the device’s advertised capacity is
80 GB, the FTL reserves certain portion of the flash
memory for cleaning and wear-leveling, and exports only
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Figure 1: SSD Write-Lifetime in Practice.

74.5 GB for the file system. The device consists of MLC-
based flash memory with 5K erasure cycles.

We created a 70 GB file and ran a write-intensive
workload that issued random writes to the file. We var-
ied the random write sizes from 4 KB to 1024 KB; the
larger the write size, the more sequential the workload
becomes. After every 1 GB of write, we read the media
wearout indicator to see if it had dropped. We repeated
the experiment with write-caching enabled (both at the
file system level and device-level) and disabled.

Figure 1 presents the rate of decrease of the me-
dia wearout indicator for different write sizes. Y-axis
presents the average total amount of data that was written
for the indicator to drop by a count of 1 (i.e., 1% of the
device lifetime) whereas X-axis shows the write size.

We make the following observations from the fig-
ure. First, as expected, the device wears out faster with-
out write-caching when compared to the system with
caching turned on. This is because caching reduces the
number of writes (for example, by coalescing overwrites)
and therefore conserves more flash write cycles.

Second, short random writes consume more write cy-
cles than large sequential writes. We believe that this is
due to write amplification in the FTL. In unbuffered case,
on an average, 1% of the write-lifetime is consumed by
every 35 GB of random 4 KB writes. Therefore, for ran-
dom 4 KB writes, the overall write-lifetime of Intel X25-
M is about 3.5 TB, which is two orders of magnitude
smaller than the ideal write-lifetime of 400 TB (80 GB
times 5K erasure cycles). For buffered 4 KB random
writes, the indicator drops every 495 GB, implying that
the write-lifetime in this case is about 49.5 TB.

Finally, we see that the rate of media wear out be-
comes a constant after certain write sizes. For example,
for unbuffered writes, between write sizes of 64 KB to
1024 KB, we see that media wearout indicator drops af-
ter a data write of 200 to 220 GB. This is likely because
of the way the FTL maps the logical pages to physical
pages; for example, if logical pages were mapped at the
granularity of 64 KB, then a single 128 KB write and a
two separate 64 KB writes are likely to consume same
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Figure 2: Lifetime Depletion in New and Old SSD.

number of flash write cycles.

2.2.2 Media Wearout on New and Old Devices

Results from Figure 1 were obtained when the device
was new. We repeated our workload (for the unbuffered
case) after 60% of the device lifetime had been consumed
(i.e., the media wearout indicator dropped below 40) to
understand if the rate of media wear is different between
different stages of a device lifetime.

Figure 2 presents the rate of media wearout when the
device was fresh and old. While there are some minor
differences, we did not see a significant difference be-
tween the rate at which the media wears out when it was
new versus old. We believe that the Intel X25-M is so-
phisticated enough to wear-level the device uniformly.

3 New Functionalities and Mechanisms

The above experiments show that the rate of depletion
depends on the observed write pattern, which in turn de-
pends on the workload and storage stack characteristics.
Understanding further about the relationship between the
workload, storage stack, and depletion can enable new
functionalities and applications. We discuss some of
them below.

3.1 Depletion-Aware Functionalities

o Better Resource Utilization Metrics: A depletable
storage system that attributes depletion accurately to spe-
cific applications can be used to enable new quota sys-
tems for shared servers, as well as new pricing models
for cloud storage. Current cloud storage providers charge
users based on how much data they store, as opposed
to how they use it. Such a model is clearly impractical
for depletable systems where aggressive workloads can
rapidly use up storage devices.

e Preventing New Attacks: Since excessive writes can
deplete the write-lifetime of an SSD, they are prone to



new types of “depletion-of-lifetime” attack. For exam-
ple, an adversarial application can issue enough writes to
drain the SSD lifetime. It is easy to show that even users
with a modest amount of storage can use excessive write
cycles and thereby drain the write-lifetime of a device.

o Improving Reliability: Traditionally, the lifetime of
a storage device is considered independent of the work-
load that it hosts. This has resulted in some standard disk
replacement practices; for example, disks are replaced
either when they are completely failed or start exhibiting
performance issues. In contrast, since the lifetime of a
depletable storage is quantifiable, system administrators
can predict when an SSD will run out of its lifetime and
create a smooth device replacement pattern.

e New Evaluation Metrics: Depletion adds a new di-
mension when comparing different storage system de-
signs, opening the door to systems that trade-off factors
such as performance or durability against reduced deple-
tion. It also leads designers to avoid components that
impose excess write activity to achieve other goals (for
example, defragmentation utilities).

3.2 Depletion-Aware Mechanisms

To enable the above mentioned functionalities, we need
certain mechanisms in a depletable storage system.
e Tracking: The first step to treating depletion as a
primary concern is to track the depletion caused by
application-level writes. This goes beyond counting indi-
vidual writes issued by applications; rather, we are con-
cerned with the actual level of depletion caused on the
media by any write, measured in write cycles.
e Attribution: We need new mechanisms that can at-
tribute every write cycle used on the storage device to
the corresponding write issued by an application.
e Control: A depletable storage system must provide
mechanisms to control the rate of media wear. Commod-
ity SSDs already provide ways to throttle writes issued to
them. We argue that such techniques must be moved up
the storage stack for better control in the software layer.
Applications sharing a depletable storage might have
certain requirements; for example, they might want to
proportionally share the available write cycles; or, they
might desire “depletion isolation” (similar to perfor-
mance isolation) from each other. To realize these re-
quirements, we hope to leverage the algorithms and
mechanisms proposed in the previous work [16, 3, 15].

4 Design Challenges

Implementing the depletion-aware mechanisms is non-
trivial; it is made difficult by two significant challenges:
storage layering and heterogeneity.

4.1 Layering

Layering poses two problems for tracking and attributing
depletion. First, multiple software and hardware layers
intervene between an application and the raw storage me-
dia, each of which can modify writes in different ways to
increase or reduce depletion. Second, the actions of these
layers are highly workload-specific; different workloads
can result in vastly different levels of depletion. Below,
we examine these problems in detail.

Write Amplification: As mentioned earlier, SSD
firmware can cause write amplification [6] due to its in-
ternal wear-leveling logic. However, amplification oc-
curs throughout the storage stack; for example, a single
write to a file may be amplified by a journaling file sys-
tem into several writes because of the writes to the jour-
nal and to the fixed location. Similarly, a software RAID
volume manager might replicate a write for reliability
reasons.

Amplification is usually workload-specific. For exam-
ple, SSD firmware amplifies small random writes but not
large sequential writes. Enough information may not be
available at a higher layer (e.g., the file system) to infer
the write amplification that occurs lower in the stack.

Write Reduction: Application-level writes may even
be reduced before they reach the media. For example, the
buffer cache manager and IO scheduler can reduce writes
by coalescing and merging multiple writes into a sin-
gle write. Such performance optimizations can interfere
with write tracking and attribution. Consider a process,
which issues an asynchronous write to the buffer cache
and exits; when the write is received by a lower layer,
there may not be an owner for write attribution. Sim-
ilarly, if writes from different applications are merged
by an IO scheduler, write attribution must handle the
merged write appropriately.

One approach for tracking the amplification and re-
duction of writes across layers involves virtual machines,
where any modification that happens to the writes in the
guest OS can be caught by monitoring writes going out to
the virtual disk, which is just a file on the host OS. Cap-
turing write modifications that happen in hardware (for
example, in RAID controllers or SSD firmware) are more
difficult. A white-box approach would consist of modi-
fying the hardware to return explicit write cycle counts in
response to writes; a black-box approach might involve
modeling the behavior of the hardware under different
workloads in order to predict the number of write cycles
used up by any write.

Controlling depletion presents more challenges. Sim-
ply denying the writes of an application, which has ex-
ceeded its quota might crash the application or even the
file system [12]. Writes of an application which has ex-
ceeded its quota may be delayed, but at the expense of



using more memory for caches. Moreover, writes may
not be always delayed because an application might re-
quest a synchronous write to the storage. New external
synchrony mechanisms might be helpful in minimizing
the synchronous writes [11]. We are examining the use
of hybrid disk storage designs, where writes issued by
applications which have exceeded their quota can be for-
warded to disk drives [14].

4.2 Heterogeneity

An aspect of heterogeneous storage mentioned previ-
ously is that all write cycles are not equal; MLC-based
flash costs less per GB compared to SLC-based flash, but
is in fact more expensive per write cycle. Designers of
depletable storage systems may need to make decisions
based on not just the quantity of write cycles being used
but also their cost. One possibility is a common currency
that allows write cycles from different technologies to be
compared.

We define a write credit as a common currency to mea-
sure the write-lifetime consumption of an application. A
write credit is the cost of raw write cycles on an SSD;
specifically, we define it as the ratio of write-lifetime to
the cost of the SSD. As of March 2010, a 80 GB Intel
X25-M with 5K erasure cycles costs about $225. The
device has 400 TB of ideal write-lifetime and therefore
costs $1 for every 1.78 TB of raw write cycles consumed.

Write credit presents a new axis by which two SSDs
can be compared in terms of their cost per write. A
64 GB of SLC-based Intel X25-E [9] costs $745. With
100K erasure cycles, the device has 6400 TB of ideal
write-lifetime. Assuming a similar firmware, the SLC
device costs $1 for every 8.59 TB of write cycles. Based
on the write credits (1.78 TB vs. 8.59 TB), the Intel X25-
E is more cost effective than the X25-M.

Heterogeneous systems can include more complex
trade-offs. For example, SSDs from different manufac-
turers may respond differently to the same workload,
with one SSD using up more write cycles than the other.
Once again, explicit feedback from the SSD to report the
number of write cycles used — or black-box modeling to
determine it — could be a potential solution.

5 Conclusion

SSDs offer several benefits over traditional HDDs; they
have better read-write performance, power characteris-
tics, and reliability. However, this comes with the price
of limited lifetime. In this paper, we argue for depletion-
aware systems that treat write cycles as a first-class con-
cern. Depletable storage systems open the door for new
functionalities such as better device replacement sched-
ule and new pricing model. However, several challenges

must be met before realizing these functionalities and we
hope to address them in the future work.
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