TrapperKeeper: The Casefor Using Virtualization to Add Type Awareness to File Systems

Daniel Peek
Facebook

Abstract

TrapperKeeper is a system that enables the develop-
ment of type aware file system functionality. In contrast
to existing plug-in-based architectures that require a soft-
ware developer to write and maintain code for each file
type, TrapperKeeper requires no type-specific code. In-
stead, TrapperKeeper executes existing software appli-
cations that already parse the desired file type in virtual
machines. It then uses accessibility APIs to control the
application and extract desired information from the ap-
plication’s graphical user interface.

1 Introduction

Type awareness is increasingly important in modern
storage systems. Traditionally, such systems managed
files as a simple array of bytes; they were generally ag-
nostic to the internal content of the files. However, many
files have rich internal structure, such as ID3 headers
of music files, and EXIF information in photos. Stor-
age systems are quickly adding exciting new function-
ality based on understanding data internal to the files
they store. For example, Apple’s Spotlight tool [9], Win-
dows Desktop Search [12], and Google Desktop [5] al-
low users to locate files based on internal metadata such
as artist names in music files and comments in photo
files. Graphical user interfaces (GUIs) can preview what
documents would look like if they were opened in an ap-
plication.

However, substantial development work is required to
support this new functionality. The almost universal ap-
proach to understanding the internal structure of files is
to require a software developer to write a plug-in that
parses the file type and generates output for a general-
purpose file system tool. For instance, given a new file
type, a developer must write a plug-in to enable Spotlight
to search through its metadata. She must write another
parser to enable Google Desktop search for Windows,
and yet another for Windows Desktop Search.

The required development effort is the root of several
problems with the plug-in approach to type awareness:

e |t doesnot scale. In total, developers must write a
different parser for each file type, for each feature

Jason Flinn

University of Michigan

(e.g., preview and search), and for each file utility
(e.g., Spotlight and Google Desktop). This devel-
opment cost is incurred not only during the initial
creation of plug-ins, but also during the evolution
of that file type.

e It inhibitsinnovation. If an organization holds a
dominant position in markets such as operating sys-
tems or search, then that organization can pressure
developers to write plug-ins. Developers will ac-
quiesce since they want their applications to work
correctly for the majority of their users. But, inno-
vators who do not enjoy such leverage struggle to
convince developers to write plug-ins for systems
that currently have small market shares.

e It ignoresthe long tail. While the most common
file types may account for the majority of the files
on a computer, the distribution of file types has a
long tail. This means that even well-funded or-
ganizations willing to invest substantial resources
may find it difficult to cover a very large percent-
age of files on a typical computer. We analyzed the
file system snapshots from 8,729 desktops at Mi-
crosoft from the most recent year (2004) collected
by Agrawal et al. [1] and found that the median file
system has 603 distinct file hame extensions and
the distribution of file name extensions has a very
long tail. Although file name extensions and file
types are not necessarily in one-to-one correspon-
dence, if one were to write type-specific code for
each extension, even writing 50 plug-ins would not
cover 24% of the files in the study. While it may
be economically feasible to write plug-ins for the
most popular file types, rarer file types will neces-
sarily be unsupported. This will create a disruption
for users of the new feature because some file types
are unsearchable, do not have previews, etc.

In this paper, we present a solution to these problems,
which we call TrapperKeeper. We observe that for a
given file type, there likely exists an application that al-
ready understands how to parse, manipulate, and display

files of that type. Thus, there is no need to write sepa-
rate plug-ins. Instead, TrapperKeeper uses virtualization
to run such applications in isolation to extract specific
features such as index terms or an image of a document
being displayed. The goal is to eliminate work that must
be done for file type to be supported. While this may im-
possible to satisfy fully, TrapperKeeper takes a large step
toward achieving it.
2 Parsing with Trapper Keeper

TrapperKeeper has three components: Trapper,
Keeper, and Grabber. Trapper is invoked once per file
type to checkpoint an application inside a virtual ma-
chine just before it executes file parsing behavior. Later,
Keeper is run when a new file of that type is added to the
file system. It resumes the checkpoint and tricks the ap-
plication within into parsing the new file. When parsing
is complete, Grabber uses accessibility interfaces sup-
plied by popular windowing systems to extract informa-
tion from the application and present it to type aware fea-
tures. For example, it might read the label and contents
of a text field to generate a key/value pair that is stored
in an indexing database. We have implemented an auto-
matic extraction process for this data. However, it can-
not deal with every possible interface. In the event that
the automated process does not collect the right data, we
have also built a mechanism to allow a human to demon-
strate which data should be collected.

2.1 Trapper: Capturing application behavior

Trapper checkpoints an application just as it is about
to execute its file parsing behavior but after it has com-
pleted its startup routines, displayed initial messages,
shown open file dialogs, and so on. This checkpoint is
later used by Keeper as a parser for file types associated
with the application in the checkpoint.

To create the checkpoint, Trapper is given a VMWare
virtual machine with the application to be captured in-
stalled. This virtual machine encapsulates the applica-
tion, its dependencies, interactions with other processes,
disk and memory state, and output. The application runs
in as natural a situation as possible while still isolating
all of the application’s output and side effects. Trapper
creates a shim file system in the guest OS that is used to
detect when the application opens a file. The shim file
system is implemented using FUSE [11] and appears to
contain a single file, which we refer to as the dummy file.

Trapper uses the VMware VIX API to start the ex-
ecution of the application within the virtual machine.
Then, the application is directed to open the dummy file
through the GUI or command line. The shim file sys-
tem blocks the resulting open system call on the dummy
file and checkpoints the virtual machine. It stores the re-
sulting checkpoint of the application about to open the
dummy file in a database of captured applications.

2.2 Keeper: Running application parsers

Keeper uses the application checkpoints produced by
Trapper to parse individual files. Keeper induces the ap-
plication to load a specific file and continue running from
the checkpoint. The resulting GUI will be parsed and
manipulated by feature-specific code using Grabber.

Given a file to parse, Keeper first determines which
application checkpoint to use. By default, Keeper uses
file extensions to determine the file type and select a cor-
responding application (e.g., files that end in “.mp3” are
parsed using a checkpoint of the Exaile music player).
However, Keeper is not limited by this assumption. Be-
cause Keeper activity has no side-effects, Keeper can try
several parsers on a file, searching for one that parses the
file correctly.

Keeper places the file to parse in a shared directory
and resumes execution from the checkpoint taken by
Trapper. In the checkpoint, the application was cap-
tured in the middle of an open system call that was being
blocked by the shim file system. Keeper signals the shim
file system to unblock the application and return from
open. It redirects read-only operations on the dummy
file to the file of interest instead. Write operations are
buffered and returned to the application if it reads the
same data that it wrote. No modifications are applied to
the original file. This sleight-of-hand effectively replaces
the contents of the dummy file with those of the file to
parse. Thus, when the application proceeds, it blithely
parses and displays the file.

2.3 Grabber: Capturing theinterface

Grabber waits for the application to load the file and
display its contents. Unfortunately, there is no standard
method to detect when an application has finished pars-
ing the file and its interface has reached a stable state in
which it displays the file contents. A timeout-based ap-
proach is undesirable as applications may take varying
amounts of time to load files. We also considered wait-
ing until the GUI was unchanged for a fixed amount of
time. However, this would not work for applications that
do not have a stable final state due to activity such as
playback of a media file.

Instead, we detect a final state by comparing the cur-
rent state with the final state generated by the previous
behavior of the same application. The first time Grab-
ber uses an application checkpoint to parse a file, it waits
a few minutes to be sure that the application GUI has
reached a final state. Grabber then uses accessibility
APIs to access a descriptive, hierarchical view of the el-
ements of the GUI and writes it to a file. Figure 1 shows
a simplified example of how a window and its child wid-
gets appear when accessed through the accessibility API.
The file generated by Grabber during this initial execu-
tion serves as an example of the final state of the applica-
tion GUI after a successful parsing. During subsequent

quﬂl Sample Window
Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua.

(Pprint) (quit)

)
T —-

Window - ‘Sample Window’’
Close Button
Minimize Button
Zoom Button
Button - ¢ ‘Print’’
Button - ‘‘Quit’’
Scroll Area
Scroll Bar
Text Area - ‘‘Lorem Ipsum...’’

Figure 1. Accessibility API view of a window

invocations, Grabber periodically reads the state of the
application GUI through the accessibility APl and com-
putes the difference between the current state and the ex-
ample state using the diff tool. Parsing is considered
finished when the difference falls below a threshold (that
decreases over time to guarantee termination).

Our method assumes that there should be a large dif-
ference between the final state of the application GUI and
that in the example while the application is parsing the
file. Once the file is loaded, some of the details of the
GUI may be different from the example, but we expect
much of the interface, such as the buttons, toolbars, and
menu items, to be the same.

2.4 Discussion

Unlike the plug-in approach, TrapperKeeper does not
need type-specific code to support a new file type. How-
ever, it does require support in the form of other software
systems, most of which are readily available.

TrapperKeeper needs an application that can parse the
file type in question and be directed to open a particular
file. While this direction may require human effort once,
the level of involvement is clearly much less than writing
a plug-in. Further, the activity can be performed by any
user of an application, not just by software developers.

The application must also implement an accessibility
interface. Accessibility interfaces are part of every mod-
ern windowing system and are designed to support tools
that assist visually impaired users. Most applications un-
knowingly implement an accessibility interface because
they use the default GUI elements that come with the
windowing system (buttons, windows, text fields, etc.)
and those elements implement accessibility by default.

Finally, TrapperKeeper also needs an instance of the
file type to let Grabber observe a successful parsing that

establishes a baseline for comparison with future pars-
ings.

3 Features

Once Grabber determines that the parsing application
within the virtual machine has successfully reached its fi-
nal GUI state, it executes feature-specific code that uses
the interface state to gather information about the file that
has just been parsed. Grabber implements functions that
features can use to query and manipulate each applica-
tion GUI. Besides reducing feature complexity by pro-
viding a common mechanism, this implementation al-
lows us to abstract away specific implementation details
of window managers and operating systems that may run
within the virtual machine.

3.1 Metadata extraction

The metadata extraction feature produces attribute-
value pairs for each file. It stores these pairs in a file
indexing system. Since the attributes extracted by the
feature are themselves type-specific, the file indexing
tool is type-agnostic. For instance running the extrac-
tion feature on an MP3 file might produce the pairs
{"artist”,"The Beatles”} and {”album”,"Revolver”}.

We have implemented two ways to select which meta-
data to extract. The first way is completely automatic.
The metadata feature searches through the GUI informa-
tion to find widgets that supply both names and values.
For instance, a photo viewer might have a label widget
with an attribute called “name” that has the value “lo-
cation” and an attribute called “text” that has the value
“Paris”. From this data, the metadata feature identifies
{“location”,”Paris”} as an attribute-value pair. Besides
labels, the automatic metadata extractor looks for text
and tables. Tables are especially valuable as they often
have column or row headers that describe cell contents.

The above method may not precisely extract the
desired metadata, so we implemented an alternative,
human-directed method for extracting metadata. The
person who uses Trapper to create an application check-
point subsequently runs Keeper on a sample file and se-
lects the GUI widgets displaying metadata of interest
by moving the mouse cursor over them and pressing a
special key sequence (Ctrl-F11). The metadata feature
makes a list of selected widgets. It extracts metadata
from only those widgets in subsequent parsings. Selec-
tions are made once per file type. It does not require any
programming skill, just the ability to use the application.

In many applications, a button or menu item can be
used to display more detailed information about a file
after it is opened. To access this information, we have
added functionality that allows the user to specify buttons
or menu items be activated when parsing is complete, but
before metadata is extracted.

3.2 Document Preview

The second feature we implemented is document pre-
view. This feature creates an image of the file being dis-
played by its parsing application; the image can then be
used as an icon for that particular file by a graphical file
browser.

The document preview feature uses Grabber to gener-
ate a screen shot of the application window after it has
loaded a file. Grabber triggers the particular platform-
specific screen shot functionality for the guest operating
system running in the virtual machine. For better screen-
shots, the user can again specify GUI elements to be acti-
vated to perform actions such as switching software into
presentation mode.

4 Evaluation

4.1 Executing features

We measured the time to extract metadata from and
generate document previews of five files. The first is a
1 MB Microsoft Word file that uses several fonts and in-
cludes several images; the document is opened by Open
Office Writer. The second is a 4.9 MB MP3 music file
opened by the Exaile media player. The remaining files
are a 4.1KB JPEG image, a 6.6 KB HTML file, and a
130B saved chess game. These files are opened by the
Gthumb image viewer, the Mozilla Firefox Web browser,
and the GLChess chess program, respectively.

In these experiments, the computer we used was a
Dell 690, with two quad-core 2.66 GHz Core 2 proces-
sors and 4 GB of RAM. The virtual machine we used was
the 64-bit version of VMware workstation 6.0.2, and the
host and guest OS were Ubuntu Linux 7.10. All experi-
ments were done with a warm cache.

Figure 2 shows the time needed to resume from a vir-
tual machine checkpoint and execute both features. As
shown by the bottom segment of each bar, Keeper takes
3.3-5.2 seconds to resume the virtual machine from a
Trapper checkpoint. Resuming from the Open Office
Writer checkpoint takes slightly longer than the other
applications, probably because Writer is more resource-
intensive and uses more memory.

The second segment of each bar shows the time that
Grabber waits for the application to reach a stable GUI
state, an average of 5.4 seconds. Again, Open Office
Writer takes the longest, 10.9 seconds, because it must
convert and display a complex document. In contrast, if
we resume Writer with a simple text document, a stable
GUI state is reached in only 4.2 seconds. The difference,
6.7 seconds, shows the benefit of detecting a stable GUI
state rather than using a fixed timeout. An algorithm with
a fixed timeout would either wait too long for simple doc-
uments or not correctly capture complex ones.

The third segment of each bar, the execution of the
metadata feature is almost instantaneous for all applica-
tions because Grabber dumps the state of the application

20 4
— Doc. Preview
] mm Metadata Extraction
wa Application
154
i == Revert
w
ke
c
o 4
9’; 10 -
P J
£
|_
5 —
0-
Open Office Gthumb GLChess
Exaile Firefox

This figure shows time needed by Keeper and Grabber to per-
form metadata extraction and document preview on five files
parsed by different applications. Results are the average of 5
trials and the error bars are 90% confidence intervals.

Figure 2. Keeper performance

GUI to determine that it has reached a stable state. Since
the metadata feature needs identical information, Grab-
ber can simply provide cached values. Parsing the meta-
data to extract attribute-value pairs takes negligible time.

The top segment of each bar shows the time for the
document preview feature to take a screen shot of each
application displaying its files, an average of 1.7 seconds.

Extrapolating from these results, TrapperKeeper
could extract metadata and make previews of 318 files
per hour. TrapperKeeper takes the longest amount of
time, 18.2 seconds, to process the Word document. At
this rate, it could still process 198 documents per hour.

Based on the file system study performed by Agrawal
et al. [1], in 2004, the last year of their study of cor-
porate desktops, the average file system contained ap-
proximately 90,000 files, 22% of which had been mod-
ified or created locally within the last year, a rate of
only 2.26 per hour. The actual rate of is higher because
the data does not capture files that are created and then
deleted between file system snapshots. Nevertheless, the
two orders of magnitude difference between the long-
term file creation rate and TrapperKeeper’s parsing rate
gives us confidence that TrapperKeeper can keep up with
the average user. Further, performance can be improved
by using a faster checkpoint and rollback mechanism in
the guest OS instead of reverting the entire virtual ma-
chine. Finally, TrapperKeeper can hybridize with exist-
ing plugin-based solutions, using fast plugins when they
are available and TrapperKeeper when not, resulting in
high performance for the most common types while en-
abling greater coverage with TrapperKeeper.

4.2 Reusing Applications

To demonstrate the general applicability of Trapper-
Keeper, we captured the type-specific behavior of every
application listed in the applications menu on a fresh in-
stallation of Ubuntu 7.10. We restricted our experiment
to the 20 listed applications that open user-specified files.

All but two of the applications worked with Trapper-
Keeper without complications. Of the remaining two,
one simply required the play button to be pressed to make
it open the file. The last required more trickery because
it only opens files in a particular folder.

Overall, we found it quite easy to capture type-
specific behavior with TrapperKeeper. Applying Trap-
perKeeper to all of these applications took a single per-
son less than eight hours. Further, because many appli-
cations parse more than one file type, the 20 applications
we handle allow us to support metadata extraction and
document preview for over 100 distinct file types.

5 Redated work

To the best of our knowledge, TrapperKeeper is the
first project to leverage existing applications in order to
extract metadata from files. This is in contrast to the tech-
nique first proposed by the Semantic File System [4],
which uses special-purpose programs to extract meta-
data. This approach is used by today’s popular metadata
indexing systems. The plug-in approach has also been
used in academic projects including Roma [10] and Stuff
I’'ve Seen [3]. More recently, document preview tech-
niques [2] based on the same principles have emerged.

Activity put in context [6] also uses GUI information
from existing applications to extract a different kind of
metadata. It identifies files related to the user’s current
task by using which window is in front as a proxy for the
active task.

TrapperKeeper makes use of accessibility APIs to
get more extensive information from an application’s
GUI. DejaView [7] previously used accessibility APIs
to archive and search the text displayed by applica-
tions. DejaView’s purpose is similar to that of Trapper-
Keeper’s metadata extraction feature. While DejaView
indexes more than just file system data, TrapperKeeper’s
metadata extraction indexes data that the user has not
viewed. It can also manipulate application GUIs through
recorded actions like GUI scripting [8] to extract more
information.

These are not the only ways to access information dis-
played to users. Screen scrapers have long been used to
access information that programs display, but do not ex-
pose through other means. However, they are difficult to
maintain as they require substantial custom code to ex-
tract the desired information and can easily be broken by
changes in the application or its configuration.

6 Conclusion

In the past, unlocking the benefits of type awareness
benefits has required software developers to build and
maintain type-specific plug-ins. Since the cost of devel-
oping such plug-ins is high, even for the most popular
features, many files will be unsupported because the dis-
tribution of file types has a long tail.

TrapperKeeper changes the economics of this equa-
tion by making it much easier to create type aware com-
ponents. Any user of an application can create a Trap-
per checkpoint since no programming is required. Our
results also show that TrapperKeeper can process hun-
dreds of files per hour, a rate that far exceeds the amount
of files created or modified by a typical user.

References

[1] AGRAWAL, N., BOoLOSKY, W. J., DOUCEUR, J. R., AND LORCH, J. R.
A five-year study of file-system metadata. In FAST’07: Proceedings of the
5th USENIX Conference on File and Storage Technologies (Berkeley, CA,
USA, 2007), USENIX Association, pp. 3-3.

Quick look programming guide, April 2010. http://developer.apple.
com/documentation/UserExperience/Conceptual/Quicklook_
Programming Guide/Quicklook Programming Guide.pdf.

2

—

3

=

Dumais, S. T., E. CUTRELL, E., CADIZ, J. J., JANCKE, G., SARIN,
R., AND ROBBINS, D. C. Stuff i’ve seen: A system for personal informa-
tion retrieval and re-use. In Proceedings of SIGIR 2003 (Toronto, Canada,
2003).

GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND O’TOOLE,
J. W. Semantic file systems. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles (October 1991), pp. 16-25.

[4

flaar)

[5
[6

d)

Google desktop, April 2010. http://desktop.google.com.

—_

GYLLSTROM, K., SOULES, C., AND VEITCH, A. Activity put in context:
identifying implicit task context within the user’s document interaction. In
11iX *08: Proceedings of the second international symposium on Informa-
tion interaction in context (New York, NY, USA, 2008), ACM, pp. 51-56.

[7] LAADAN, O., BARATTO, R., PHUNG, D., POTTER, S., AND NIEH, J.
DejaView: A personal virtual computer recorder. In Proceedings of the
Twenty-first ACM Symposium on Operating Systems Principles (Stevenson,
WA, Oct 2007), pp. 279-292.

[8] LITTLE, G., LAU, T. A,, CYPHER, A., LIN, J., HABER, E. M., AND
KANDOGAN, E. Koala: capture, share, automate, personalize business pro-
cesses on the web. In CHI "07: Proceedings of the SIGCHI conference on
Human factors in computing systems (New York, NY, USA, 2007), ACM,
pp. 943-946.

[9] Spotlight overview, April 2010. http://developer.apple.
com/documentation/Carbon/Conceptual/Metadatalntro/
MetadataIntro.pdf.

[10] SwiERK, E., KICIMAN, E., LAVIANO, V., AND BAKER, M. The Roma
personal metadata service. In Proceedings of the 3rd IEEE Workshop on
Mobile Computing Systems and Applications (Monterey, CA, 2000).

[11] Szerebi, M. Filesystem in userspace, April 2010. http://fuse.
sourceforge.net/.

[12] Windows desktop home page, April 2010. http://www.microsoft.
com/windows/desktopsearch.

