
Fast and Cautious Evolution of Cloud Storage

Dutch T. Meyer†, Mohammad Shamma†, Jake Wires‡, Quan Zhang†,
Norman C. Hutchinson†, Andrew Warfield†

† Department of Computer Science ‡ Citrix, Inc
University of British Columbia jake.wires@citrix.com

dmeyer,mshamma,quanz,andy,norm@cs.ubc.ca

Abstract
When changing a storage system, the stakes are high.
Any modification can undermine stability, causing tem-
porary downtime, a permanent loss of data, and still
worse - a loss of user confidence. This results in a cau-
tious conservatism among storage developers. On one
hand, the risks do justify taking great care with stor-
age system changes. On the other hand, thisslow and
cautiousdeployment attitude is a poor match for cloud
services tied closely to web-based frontends that follow
an “always beta” mantra. Unlike traditional enterprise
servers, cloud-based systems are still exploring what fa-
cilities should be provided by the storage layer, requiring
that storage services be able to evolve as quickly as the
applications that consume them. In this paper, we argue
that by building support for evolution into the basic struc-
ture of a storage system, new features (and fixes) can be
deployed in afast and cautiousmanner. We summarize
our experiences in developing such a system and detail
its requirements and design. We also share some initial
experience in deploying it on a rapidly evolving, but pro-
duction, cloud hosting service that we have been building
at UBC.

1 Introduction

Enterprise storage is expensive and boring. You buy it,
the salesmen will explain, so that you can sleep at night.
While this ethos continues to be appropriate for many
storage customers, it stands in stark contrast to the ap-
proach emerging in cloud-based systems. In the cloud,
applications are perpetually in beta, developers release
often, and the drive for scale and application agility has
led to new, rapidly-evolving storage services on a range
of storage interfaces including blocks [2, 10], key-value
pairs [6, 3], and database-style APIs [5]. The designers
of these systems are continuously pulled in many direc-
tions as they try to meet new demands of scale, work-
loads, and evolving applications. While the “right” way

to build storage for cloud environments is still being ex-
plored, we believe that a fundamental, common property
of all storage-as-a-service systems is the requirement that
they embrace change, by facilitating the frequent but safe
deployment of software changes.

The work in this paper is motivated by our experi-
ence developing a new storage systemwhile using it in
a production environment. Recently, we deployed a vir-
tual machine hosting service based on our storage sys-
tem Parallax [10]. However, during the initial design,
we could not anticipate all future uses, features, or work-
loads relevant to the system. As a result, we recently
implemented new defragmentation and garbage collec-
tion features. We plan to implement and deploy tiering
and block annotations in the next few months. In the for-
mer, different classes of blocks are stored with differen-
tiated levels of replication, while in the latter the system
stores additional per-block metadata such as usage infor-
mation, taint tracking, and access patterns. Adding these
features will fundamentally change the operation of the
system, require new per-volume and per-block meta-data
structures on disk, and modify the block lookup process.
Traditionally, such upgrades would either imply a long
stabilization process, or an unacceptable risk.

In the spirit of the web’s “always beta” mantra, as each
update to the storage system is developed, a selected sub-
set of virtual machines will be upgraded to the new ver-
sion in order to gain early experience with these features.
Of course, we (and our clients) will be very disappointed
if the storage system loses or corrupts any data. To that
end, we introduceDovetail, a set of primitives that allow
a wide range of modifications to be deployed safely and
easily. The components of Dovetail are:

• Deployment and Migration Tools: Tools which en-
able administrators to apply upgrades selectively to
specific storage consumers and their data.

• Safe Upgrade Mechanisms: Safeguards to ensure
that data in a new storage system version can be

1

recovered from prior versions, and that flaws in an
upgrade do not corrupt other versions of the system.

• Live Reconfiguration Interface: An interface which
enables the modification of storage systems without
noticeable service disruptions.

Together, these components provide an environment in
which upgrades to a running system can be made safely,
even if the upgrade itself is not safe. This has allowed
us to incrementally redesign and upgrade a production
cloud storage system to deploy more ambitious features,
experiment with new designs, and shorten release cycles.

2 Storage Architecture Assumptions

Several architectural assumptions must hold for any stor-
age service that would use Dovetail. Figure 1 shows
an environment we consider typical. It divides the stor-
age system into three abstract layers. At the top of the
stack are applications and OSes that consume storage
over some interface: block, file, key-values, or some-
thing else. At the bottom is a block layer that man-
ages the allocation and assignment of physical storage re-
sources in the spirit of systems such as Petal [9]. Within
this model, we assume the ability to interposeTeeand
Isolation Layermodules (shown shaded in Figure 1) on
either side of the storage service to be upgraded.

Our environment, which motivated our interest in stor-
age system upgrades, is a virtual hosting service. We cur-
rently support Parallax [10], which exports virtual disks
transparently to VMs, and CouchDB [3], a scalable key-
value store.

Physical

Aggregation

Layer

Parallax

ver. 23

Application

Layer

Storage

Service

Layer

Parallax

ver. 24

Disk Aggregation

CouchDB

Virtual

Machine

Virtual

Machine

Virtual

Machine

Version Isolation

TeeTee

Figure 1: Our example cloud storage environment.

2.1 Supported Upgrades

The Tee and Isolation layer are thin shims that provide
safe upgrade mechanisms to any storage service between
them. Upgrades can consist of any code modification,
ranging from a small patch to a complete re-write of the
storage service. They can modify any aspect of the op-
eration or on-disk layout of the system. Upgrades can
also be applied to a subset of the on-disk data, leaving
the remainder of the content to be migrated over time.

We assume that the interfaces above and below these
shims stay reasonably fixed. While this assumption
has been shown to hold for block and file interfaces, it
represents a limitation for the introduction of interface-
changing features. We briefly discuss how this class of
upgrade (such as extended attributes on files or block de-
vice snapshots) might be incorporated in Section 5.

Dovetail does not attempt to support upgrades to
the lower layers of the storage stack, including device
firmware, drivers, or the physical aggregation layer. Our
belief is that these layers are less likely to be a source
of rapid evolution in cloud environments, and should be
serviceable with conventional upgrade and maintenance
techniques.

3 Architecture

A flow chart of Dovetail’s upgrade process is provided
in Figure 2. Each panel highlights one of three areas of
concern: We must address which users see an upgrade
and how their data is updated to new versions of the sys-
tem (Deployment and Migration). We must ensure that
the upgrade process itself is non-disruptive (Live Recon-
figuration). Finally we must safeguard against software
errors in each upgrade (Safe Upgrade). For the purposes
of illustration, we will discuss each problem in the con-
text of adding support for data tiering to Parallax, starting
with the concern for safety.

3.1 Safe Upgrade

Data tiering, as mentioned in Section 1, allows critical
on-disk structures to be replicated. While this is intended
to increase reliability, the change also carries some risk.
Since it modifies the block indexing code, a software er-
ror could cause structures that are intended to be repli-
cated to instead be lost.

Safety in Dovetail is provided by two modules shown
in Figure 1. Teesdetect errors and recover by returning
the service to its original state. Modifications made after
the upgrade are preserved.Version Isolationdisallows
writes that might otherwise cause corruption.

2

(Section 3.3)

Deployment and Migration

(Section 3.2)

Live Recon�g.

(Section 3.1)

Safe Upgrade

(Section 3.2)(Section 3.1)

Develop new

version v.N+1

Select

Deployment Discard

v.N
Migrate

from v.NDiscard v.N+1

Introduce v.N+1

Failure Trusted

Relax validation

Increase Deployment

Observe

Figure 2: Our work-flow for performing storage service upgrades, categorized by the relevant sections in the text.

3.1.1 Tees

To ensure recoverability after a flawed upgrade, we de-
ploy the upgraded version of the system alongside the
existing version and replicate the request stream to both.
This mechanism is provided by an interface-specific Tee.
In contrast to more conventional N-Version systems like
EnvyFS [4] and RAIF [8], Tees compare the results of a
trusted system to those of a system under test.

Our block device Tee is implemented in 508 lines of C
code as a blktap [14] module. It operates at disk granular-
ity and is capable of supporting any block-based service.
We have also implemented a Tee for CouchDB in 904
lines of C that operates at database granularity. Tee mod-
ules maintain consistency between versions by mirroring
write requests and validate correctness by comparing the
data returned from reads. Requests received through aux-
iliary interfaces (e.g., volume snapshot requests) can also
be mirrored by the Tee, if appropriate.

A Similar Tee abstraction has been used in the past
to verify heterogeneous implementations of an NFS
server [13]. In that work, use in a live setting was dis-
cussed but not attempted. Our system is focused en-
tirely on production environments and has been deployed
in practice. We extend the technique to allow both the
trusted system and the system under test to share a com-
mon storage substrate, and allow configurable tradeoffs
between the fidelity of integrity checks and the overheads
associated with such validation. The Tee is also logically
similar to the “parallel universe” created in Imago [7] by
mirroring a website to Amazon’s cloud-compute service.

3.1.2 Tee Policies

Initially, we will want to observe our upgraded system
closely for errors. As we gain confidence in the up-
grade, we would then prefer to relax validation efforts
in exchange for performance, as shown in panel three of
Figure 2. For this reason, a Tee can follow a variety of
validation policies. TheSynchronous cross checkspol-
icy stipulates that read requests are mirrored across both
versions of the storage system and validated against each
other, while write requests are re-read after completion.
In the case of a mismatch, the VM can continue under
the original version and the error can be reported.

Other protection levels offer progressively better per-
formance with more relaxed validation, as summarized
in Table 1. In theBarrier writes asynchronouspolicy,
writes to the more trusted disk are delayed until all prior
reads are verified. This means that an application may
receive bad data, but it will not write to disk as a re-
sult. InAsynchronous with new version primary, on-disk
data could be modified in response to a bug in an up-
grade. InLazy validate hashes, hashes of large regions
of the disk are periodically computed to catch errors in
the background.

Policy Error Exposure

Synchronous cross checks
√

⊕

No errors exposedSynchronous read checks
√

Async. w/ old version primary
√

Barrier writes async.
√

To app. level only
Async. w/ new version primary

√

On-disk and to app.
Lazy validate hashes

Table 1: Tee protection levels,
√

denotes policies cur-
rently implemented for the block-level,⊕ for CouchDB.

3.1.3 Isolation Layer

In our environment, all storage services use a shared
block store. This presents a problem, as a flawed soft-
ware upgrade could follow an invalid block pointer and
corrupt data in another service. To address this, we added
an access control mechanism similar in spirit, though
lighter-weight than Snapdragon [1].

Permissions in our system are<location, key> tuples
applied to large extents of the block store. Each version
of the system, as identified by the key, works in isolated
extents to contain errors. Tuples provide permission to
write to the associated extent. They are granted during
extent allocation, cached, and checked for every write.
Read permissions (to ensure data privacy) are not im-
plemented. Even if such a mechanism were provided, it
could not protect privacy within a opaque virtual disk.
Therefore, we use validation policies that validate all
reads at the Tee level until such a time as we are satis-
fied with the privacy provided.

3

3.2 Live Reconfiguration

Safe upgrades would be far less attractive if systems had
to be taken off-line for deployment. To remove this con-
cern, both our Tees are capable of reconfiguring their un-
derlying storage services by pausing the request stream,
letting outstanding requests complete, and adding or re-
moving services as desired. This works in part because
Parallax and CouchDB are largely stateless. The same
would not be true of all filesystems. Restartable filesys-
tem support has been considered in Membrane [12], and
we consider this to be interesting future work.

3.3 Deployment and Migration

The final concerns we must address are highlighted in
the first and fourth panels of Figure 2. Here we wish to
deploy our tiering implementation. To fully upgrade we
must also migrate existing data to the new system.

A full deployment of data tiering to the entire cluster
is possible, but it is likely better to start with a subset of
the cluster and gain experience and confidence in the up-
grade first. Upgrades operate at the service-level unit of
storage (likely disk or database, though we make no hard
assumptions) and could be made based on their tolerance
of, or need for, the feature. Alternatively they could be
sampled randomly. Over time we will expand this group,
as shown in the third panel of Figure 2.

After some time under successful observation, the new
version of the system will be fully trusted and the old
version will be retired. Before this point we will need to
migrate existing data from the old version of the service
to the new. A copy-out operation provided through the
Tee can be invoked at any time to make migration safe
and recoverable. Naturally, developers could instead use
an in place upgrade tool once the new version is trusted.

4 Evaluation

In this section we establish the overhead of the Tee mod-
ule and isolation system. We also discuss our experi-
ences with deploying Dovetail on our live storage system
and recovering from real errors.

4.1 Handling errors

Our primary concern in deploying Dovetail was to ensure
that our in-development system was safe to deploy at the
necessary release cycle. Since January 20th, 2010, we
have been using Dovetail to provide safe upgrades for
a virtual machine hosting service. Our first users were
comfortable with placing their data on our prototype
because it was mirrored (using Dovetail) onto Ext3 on

Linux. We deploy a new set of upgrades from our source-
code repository, on average, every 3 weeks, though noth-
ing would prevent us from doing so more frequently. By
convention developers run a regression suite prior to any
checkin. Of the 46 patches deployed in this manner, 2
have contained flaws that would have affected users, but
were instead caught by our Tee validation system.

On January 29th, an upgrade attempt failed quickly af-
ter installation. The code defect would have been caught
by the test suite, but one of the developers failed to fol-
low the testing policy. On March 4th another software
defect caused a failure on one user’s disk. In this case it
was a rarely seen race condition that depended on an un-
usual interleaving of requests. It was not triggered until
the system had been in use for nearly a month. Rather
than rushing a hotfix to correct this issue immediately,
we left the flawed version running on all other disks, out
of convenience, until the next scheduled upgrade.

4.2 Performance Overhead

Maintaining multiple versions of a storage service nec-
essarily incurs extra I/O operations. The primary goal of
this section is to show how validation policies mitigate
system load increases. We focus on a worst-case con-
figuration by targeting a single disk and sending every
request through our block level Tee.

Sync.
Cross Check

Sync.
Read Check

Async. w/
old primary

Barrier
writes async.

Mirror
 w/o Validate

N
or

m
al

iz
ed

P
er

f.
(t

im
e)

0
0.75
1.5

2.25
3

3.75
4.5

3.28
2.75

2.43 2.43

1.7

4.21

2.62

1.86 1.76 1.74

3.49 3.41 3.17 3.16

1.02

Postmark Write Throughput Read Throughput

Figure 3: Tee policy overheads

Figure 3 shows the test time for each of Postmark, se-
quential write, and sequential read workloads under five
Tee policies. Results are normalized against a baseline
with no Tee or Isolation layer (i.e., a score of 2 means
it took twice as long to complete the workload). The
first four policies operate as described in Table 1 and
show progressively better write performance. TheMir-
ror without validatepolicy shows the overhead of mirror-
ing writes without validating reads. Read performance
is dominated by seek overhead, which may be less pro-
nounced on a multi-disk array. The overheads of isola-
tion are minimal. Modifications to access controls are
rare (one I/O per 2GB of new write requests) and per-
mission checks can be cached.

These measurements clearly indicate that the in-
creased validation provided by Dovetail is not free. How-
ever, we expect these increases will be applied to an

4

admin-controlled subset of the system, and can be ab-
sorbed with appropriate disk provisioning. Further per-
formance gains could be made by buffering writes [11]
or using Single Instance mechanisms [4]. Finally, once
confidence in a new version has been established, the Tee
and all of its attendant overhead can be removed.

Deduplication

Compression

Data

Tiering

Encryption

Block

Annotations
Workload

Logging

Superpages

Blo
ck

 In

te
rf

ace

Syste
m

 C

ode

D
ata

 C

onte
nt

Per-
Blo

ck

 M

eta
data

Per-
Volu

m
e

 M

eta
data

Blo
ck

 In

dexin
g

N
ew

 O
n-d

is
k

 S

tr
uctu

re
s

Upgrade

t

v

l

X

 l: For taint tracking, usage info, greybox

 techniques, access pro!le and patterns.

 X: Used for data collection, possibly also

 journaling and placement optimization.

 t: Di"erentiated levels of striping and replication

 for di"erent classes of blocks.

 v: Analogous to mem. managment, contiguous

 region of blocks indexed high in a lookup tree.

Figure 4: Future Parallax upgrades and their impacts.

5 Conclusion and Future Work

Dovetail can recover from a failed software upgrade of a
storage system. Unlike OS-level upgrade recovery mech-
anisms [15], it can protect against the resulting destruc-
tion of on-disk data. Live reconfiguration and migration
services ensure that moving between versions is sim-
ple and non-disruptive. This framework has helped us
shorten our own release cycles, providing a much better
match for an in-development storage service.

Our successes with Dovetail have encouraged us to
continue to develop and use the system. Figure 4 shows
our current upgrade plans for Parallax and their associ-
ated impacts. The majority of these changes can be fully
protected. However, changes to the storage aggregation
or Tee interface require careful consideration. In provid-
ing a Tee between Parallax and ext3, we chose to ignore
the snapshot requests against the trusted system. In the
event of a failure, these snapshots would be lost. Alter-
nately, we could have suffered a full volume copy-out
during snapshot.

Much of the run-time overhead of Dovetail could
be eliminated by removing redundant I/O with a data
deduplication layer [12]. The costs of migration could
be amortized by supporting an Upgrade-on-Write mode
where modifications to the trusted system would call pro-
grammer provided upgrade code and copy the data to the
newer system. In practice, this is already a requirement
of storage developers looking to modify on-disk formats.
Exposing block placement information at the disk aggre-
gation layer would help support firmware and hardware

upgrades, by ensuring that modifications only affect a
subset of data replicas.

Finally, identifying the sufficient subset of users to
evaluate an upgrade, and the correct length of time to
observe the system are important areas of future work.
As we gain experience with the approach, we hope to
develop guidelines and best practices for performing ag-
gressive upgrades of production cloud storage systems.

References

[1] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,
E. Oertli, D. Andersen, M. Burrows, T. Mann, and C. A.
Thekkath. Block-Level Security for Network-Attached
Disks. InFAST’03.

[2] Amazon.com. Amazon simple storage service (Amazon
s3). http://aws.amazon.com/s3.

[3] J. C. Anderson, J. Lehnardt, and N. Slater.CouchDB: The
Definitive Guide. O’Reilly Media, 2010.

[4] L. N. Bairavasundaram, S. Sundararaman, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau. Tolerating File-System
Mistakes with EnvyFS. InATEC’09, San Diego, CA.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
In OSDI’06, pages 205–218, 2006.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store.SIGOPS Oper. Syst. Rev.

[7] T. Dumitraş and P. Narasimhan. Toward upgrades-as-a-
service in distributed systems. InMiddleware’09.

[8] N. Joukov, A. Rai, and E. Zadok. Increasing distributed
storage survivability with a stackable raid-like file system.
In CCGRID’05, pages 82–89, 2005.

[9] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. InASPLOS ’96, pages 84–92, Cambridge, MA.

[10] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J.
Feeley, N. C. Hutchinson, and A. Warfield. Parallax: vir-
tual disks for virtual machines. InEurosys’08.

[11] H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. Snapmirror: File-system-
based asynchronous mirroring for disaster recovery. In
FAST’02.

[12] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C.
Arpaci-dusseau, R. H. Arpaci-dusseau, and M. M. Swift.
Membrane: Operating system support for restartable file
systems. InFAST’10.

[13] Y.-L. Tan, T. Wong, J. D. Strunk, and G. R. Ganger.
Comparison-based file server verification. InATEC ’05.

[14] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facilitat-
ing the development of soft devices. InATEC’05.

[15] M. Wise. Windows xp system restore.
http://technet.microsoft.com/en-
us/library/bb490854.aspx.

5

