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Abstract
Key-value stores are becoming a popular choice for per-
sistent data storage for a wide variety of applications, and
multiple implementations are currently available. Decid-
ing which one to use for a specific application requires
comparing performance, a daunting task due to the lack
of benchmarking tools for such purpose. We presentKV-
Zone, a tool specifically designed to evaluate key-value
store performance. We used KVZone to search for a
key-value store suitable for implementing a low-latency
content-addressable store that supports write-intensive
workloads. We present a comparative evaluation of three
popular key-value stores: Berkeley DB, Tokyo Cabinet,
and SQLite, and find that none is capable of approaching
the IO rate of our persistent device (a high-throughput
SSD). Finally, we present theAlphard key-value store
which is optimized for such workloads and devices.

1 Introduction

Applications frequently need to store data persistently,
a task traditionally achieved through filesystems or re-
lational databases; in recent years they are increasingly
being replaced by simpler storage systems that are eas-
ier to build at scale while maintaining reliability and
availability. Examples of such systems are columnar
stores (e.g., BigTable [4]), document stores (e.g., Mon-
goDB [10]), and most popularly, key-value stores (e.g.,
SimpleDB [12], Berkeley DB [3], Tokyo Cabinet [14],
SQLite [13]). The simplicity and scalability of key-value
stores has made them the infrastructure of choice for a
wide range of usage scenarios. Not surprisingly, a large
number of key-value stores have been developed, both
commercial and open-source, each with distinctive per-
formance, availability, and reliability characteristics[11].

A system designer considering the use of a key-value
store for persistent data storage needs to be able to ac-
curately compare the performance of different key-value
stores for the same set of relevant workloads. Given the
large number of key-value stores to choose from, this can
be a daunting task. While subjective comparisons and
critiques can be found on several websites and bulletin
boards [5, 9], we are interested in quantitative perfor-
mance differences under controlled workloads.

Recently, we developed HydraFS [15], a file system
for HYDRAstor [6] content-addressable storage system.

Originally designed for streaming applications, such as
backup, we are currently working on improving its per-
formance for metadata intensive applications through the
addition of a low-latency content-addressable cache, built
using a key-value store on top of a high-performanceSSD.
Our plan was to select an open-source key-value store that
performs the best for our target workload. Since the key-
value store was used for a local cache, we limited our
search to the evaluation oflocal key-value stores, which
considerably reduced the number of choices. However,
these results are useful even for comparing distributed
key-value stores since many of them are implemented as
a distributed layer on top of a local key-value store (e.g.,
Voldemort uses Berkeley DB, ErlangDB uses Mnesia).

Comparing the performance of even the smaller set of
local key-value stores was harder than we thought. First,
none of the existing storage benchmarks are designed to
generate load in terms of key-value pairs, or easy to mod-
ify for that. Second, each key-value store we wished to
test had a different interface. We believe benchmarks for
key-value stores have to be adept at handling the interface
diversity. For example, the three key-value stores we con-
sidered have different interfaces.

In order to perform an accurate comparison of the dif-
ferent key-value stores, we have taken the first steps in
building a new benchmarking tool called KVZone, anal-
ogous to the IOZone benchmark for file systems [8].
KVZone is useful for conducting a broad analysis of
key-value stores, having multiple configuration options
to specify properties of keys, values, and operations on
them; it solves the problem of different interfaces by pro-
viding a set of adapter modules that present the same in-
terface to the load generator.

The current implementation of KVZone suffices for our
needs in comparing key-value stores under write-intensive
workloads. Other requirements, such as handling dis-
tributed key-value stores and various aspects of locality
(e.g., for key-value stores supporting sequential scan of
the key-space), are likely to be important for the increas-
ingly varied use of key-value stores. In this paper we seek
to draw the attention of the storage community to some of
the aspects that we consider important in benchmarking
key-value stores, and point out the need for a more me-
thodical approach to understanding the requirements for
key-value store benchmarking in general.
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Figure 1: Overview of KVZone.

Key-Value Store Throughput Latency (ms)
(MB/s) Avg. Stdev

SQLite 17.91 817.8 478.7
Berkeley DB 130.14 87.8 51.5
Tokyo Cabinet 178.32 38.4 36.1
Alphard 486.80 0.8 0.5

Table 1: Comparison of existing key-value stores write perfor-
mance. Throughput of raw device is approximately 500 MB/s.

Using KVZone we compared three popular local key-
value stores: Berkeley DB, Tokyo Cabinet, and SQLite.
Tokyo Cabinet performed by far the best, followed by
Berkeley DB; SQLite performed an order of magnitude
worse in most tests.

However, even Tokyo Cabinet was not capable of ap-
proaching the IO rate of our SSD. To close the perfor-
mance gap with the SSD, we built Alphard. The design
goal was to execute each key-value store operation with
at most one device IO. This was achieved by: employing
an asynchronous interface, where requests are first placed
in a queue and serviced by multiple threads; eliminating
the need for metadata IO by keeping in memory all im-
portant metadata and using a layout which allows storing
the modified metadata in the same IO with that of the as-
sociated data.

Our evaluation shows that for write intensive workloads
Alphard can achieve performance comparable with that of
the underlying device.

2 KVZone Performance Analysis Tool
2.1 Modes of Operation

Figure 1 shows the overall design and important data
structures of KVZone; it generates a workload consist-
ing of lookups, inserts and deletes in configurable pro-
portions, where the sizes of keys and values are drawn
from specified distributions. The system currently sup-
ports fixed size and uniform distributions; we plan to add
support for realistic distributions of key-value sizes, simi-
lar to generation of file-system images by Impressions [1].

The rate of requests issued by the benchmark can be
specified as either athroughputor latencytarget. In the
former case, the tool determines the number of inserts

per unit of time by taking into account the sizes of the
key-value pairs. The tool continues until thetotal num-
ber of bytes requested are inserted, looked-up, or deleted.
In the latter, a lower (or higher) latency is achieved by
decreasing (respectively increasing) the number of opera-
tions generated in the next unit of time; there is an option
to stop the execution when this number falls below a spec-
ified limit, signifying that the target is un-achievable.

One can also specify thelifetimeof keys, the duration
between a key’s insertion and deletion; it can be either
fixed, or be drawn from a uniform distribution. Note that
in order to avoid the store becoming full or empty during
a long run, the rate of deletions must equal that of inser-
tions.

Finally, one can measure the performance of lookups or
deletes alone by pre-populating the key-value store with a
number of key-value pairs, specified prior to the bench-
mark run.

2.2 Design and Implementation

KVZone consists of three main components: a load gen-
erator, an asynchronous interface, and a set of adapter
modules allowing the use of different key-value stores; we
now describe each of these in more detail.

The load generator has a set of threads, one for each
operation type (lookup, insert, delete), and one for pre-
populating the store with key-value pairs prior to bench-
marking. The insert thread obtains the details of a request
(i.e., the key and the size of the value) from a list of keys
and a list of values, pre-generated to match the distribu-
tions specified by the user. On insert completion, the key
is added to anactive key set, which helps the lookup and
delete threads to generate valid requests. Each thread al-
ternates between submitting requests and sleeping, based
on the rate requested for that operation by the user.

In order to support key value stores, such as Alphard,
that have an asynchronous interface the KVZone interface
needed to be asynchronous as well; each operation (insert,
lookup, delete) specifies a continuation that is executed on
operation’s completion. The asynchronous interface con-
sists of a set of queues holding requests submitted by the
load generator, and a set of worker threads that issue syn-
chronous calls to the appropriate adapter, passing through
one of the queues; this interface allows a key-value store
implementation to process more than one request with just
one IO operation. On completion, the same thread invokes
the continuations that were passed by the load generator.

In designing KVZone, we wanted to be able to run the
exact same workload on different key-value stores to en-
able a fair performance comparison. Since different key-
value stores can have different interfaces, we needed to
translate the generic request from the load generator to
one that is understood by the implementation-specific in-
terface of a particular key-value store; an adapter module
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Figure 2: Overview of Alphard.

(one per key-value store) does precisely that.
For key-value stores that have a synchronous interface,

the adapter module performs adequeueoperation to ob-
tain the request to be issued. The adapters maintain per-
formance counters necessary to measure the native la-
tency of a key-value store (without queuing delays). The
callbacks passed by the load generator are responsible for
recording operation latencies that include queuing delays.

In the future, KVZone can be improved along sev-
eral dimensions including configurability and scalability,
along with a set of canned configurations representing
some canonical workloads. We intend to further inves-
tigate key-value store workloads in our production envi-
ronment and by running real applications; one possibility
is to run a database query engine and observe the corre-
sponding set of key-value operations.

3 The Alphard Key-Value Store
Using KVZone to compare three popular key-value stores
we observed that none achieves a throughput close to that
of the underlying device, as summarized in Table 1. To
close the large gap between the device and the highest-
performing key-value store for our workload (more than
60%!), we implemented Alphard. Our discussion of Al-
phard is quite terse, emphasizing its impact on the require-
ments for KVZone and the benefits of the comparative
evaluation on Alphard’s design.

3.1 Design Goals

The requirements for Hydra’s key-value store reflect
the needs of typical high-performance primary storage:
low latency, high throughput, scalable concurrent perfor-
mance, and no single point of failure. The key-value store
contains optimizations, such as using direct I/O, that boost
its performance when used with flash-based media. (Fu-
sionIO recommends using ODIRECT for all I/O to their
devices [7].)

3.2 Design and Implementation

Figure 2 shows the design of Alphard and its components
which we discuss next; mirroring is relatively straightfor-
ward and we omit its discussion due to lack of space.

3.2.1 Space Allocation and On-disk Layout

Alphard contains an allocator to directly manage space,
and does not require a file system to access a block de-
vice; having a dedicated allocator was useful for two rea-
sons. First, usage of ODIRECT requires that in-memory
buffers, disk addresses, and request sizes be aligned to the
device block size. Second, Alphard batches inserts, and
this requires special handling during allocation.

The allocator supports three operations:alloc, allocAd-
jacent, and free. It maintains a bitmap (each bit corre-
sponds to a block), as well as a short list of recently freed
blocks (so as to speed-up allocations when there is signif-
icant churn but little free space).allocAdjacentallocates
space on the device adjacent to a given address; it is used
to coalesce multiple inserts so that they can be made per-
sistent with just one device IO.

To reduce the total number of device IOs, each key-
value pair is written together with metadata consisting of:
key and value lengths, a virtual timestamp, and a check-
sum. The timestamp is necessary to allow the insertion
of an already existing key (but with a new value) to be
done with just one IO: if the size of the serialized entry
is larger, we allocate new space for it and mark the old
space as free, and store persistently the new entry with-
out modifying the old one; during startup/recovery, if a
key is part of more than one entry, only the latest is re-
tained. This makes recovery slower, as all device blocks
have to be read; for us this was an acceptable trade-off,
as even a large SSD can be read fairly quickly. Note
that the metadata overhead, together with the block align-
ment requirements, result in non-negligible overhead for
key-value pairs of small size. Again, we considered this
space/performance trade-off acceptable since the majority
of our writes are large.

3.2.2 In-memory Index

Since key-value pairs have temporal locality (as opposed
to spatial locality based on the key values) we need to
maintain an index in memory. Alphard uses an efficient
in-memory index storing the following information: 8
bytes storing either a key smaller than 7 bytes and its
length, or a pointer to a larger key; on-disk start address
(4 bytes) and length (4 bytes), in alignment-sized blocks.
Since for larger keys the index contains only a pointer to
the key, extra memory is needed in these cases, adding to
the per-entry overhead of 16 bytes. The in-memory index
uses cuckoo hashing with 32 keys per bucket.

The above scheme was sufficient for our needs, as our
application did not generate keys larger than 7 bytes; the
tests presented in this paper used 32-bit integer keys. In
the future we plan to investigate data structures that better
accommodate a high number of large keys.
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3.2.3 Asynchronous Queue Interface

Alphard exports a (non-blocking) asynchronous interface;
all key-value store operations (i.e., insert, lookup, and
delete) are first placed in a logically centralized queue.
Upon finishing any previous operation, a worker thread
removes from the queue one or more operations that will
be executed with one synchronous IO to the block device.
Multiple worker threads service the queue, for which rea-
son the queue is synchronized; in order to mitigate lock
contention, multiple physical queues are used, with re-
quests mapped to queues based on the key specified in
the request. After executing the IO, the thread invokes the
callbacks specified by the application during submission
of those requests.

• Insert: The key and value of an insert request are seri-
alized into the thread’s pre-allocated buffer, followed by
any padding necessary due to alignment requirements for
each key-value pair, followed by the appropriate meta-
data. Space on the device is allocated for this entry. If
other insertion operations exist in the queue, they are pro-
cessed similarly, as long as there is space in the buffer
and device allocations can be made contiguously to those
of previous entries. The buffer containing one or more
key-value pairs is written to the device with a single I/O;
upon success, the key, device location, and entry length
are recorded in the in-memory index.

• Lookup: First the location and value size of the en-
try on the device are retrieved from the in-memory index.
Next, data is read from the device and checked for valid-
ity; the validated value is then returned.

• Delete: Alphard simply overwrites the first block be-
longing to the key-value entry on the device with zeroes,
removes the associated entry from the in-memory index,
and marks the device blocks as free. The durability of the
delete is guaranteed since the on-disk entry now lacks a
valid header.

4 Evaluation

4.1 Summary of Existing Key-Value Stores
We first present a summary of our findings for the perfor-
mance evaluation of three popular local key-value stores:
Berkeley DB, Tokyo Cabinet, and SQLite. Although a
large number of distributed and local key-value stores are
available, for use in HYDRAstor we were interested in the
performance of the latter; we do not evaluate distributed
key-value stores such as Voldemort, Cassandra, and mem-
cached.

Berkeley DB: is highly customizable and supports fine-
grained locking, although as we found, its transactional
data store is prone to deadlocks for write-intensive work-
loads; we instead used its concurrent data store. In our
evaluation we observed that Berkeley DB provides poor
throughput for write-intensive workloads and exhibits a

high latency for concurrent operations.
Tokyo Cabinet: a high-performance and scalable key-
value store used by Mixi, a popular Japanese social net-
working site. Tokyo Cabinet performed by far the best of
the three; however, its performance was not close to that
of the underlying SSD.
SQLite: the least impressive in terms of performance, of-
ten performing an order of magnitude worse; the graphical
results omit SQLite to retain readability.
4.2 Performance Evaluation of Alphard
Due to lack of space, we highlight with a few results
Alphard’s performance improvements, the key insight to
which is the reduced number of device I/Os needed – at
most one per operation.

4.2.1 Experimental Setup
We conduct all experiments on a FusionIO 80 GB SSD
formatted to 50 GB; the remaining space provides a large
enough pool of free blocks to sustain performance as rec-
ommended [7]. The test machines have 2 Intel Xeon
X5450 Quad Core 3GHz CPUs, 8 GB of memory and run
Linux 2.6.18. In the graphs,Alphardraw denotes the per-
formance of Alphard over a raw device, andAlphardfs
that over a file system. Since the choice of using raw de-
vice or filesystem may depend on factors other than per-
formance, we include both numbers. We also ran similar
experiments with mirroring to another Alphard instance
and observed less than 5% drop in performance.

4.2.2 Write-only Performance

Figure 3 compares performance in the absence of reads;
deletes are introduced at the same rate as writes to en-
sure steady progress. In the first graph, as the target
load IOPS increase, Alphard’s performance peaks at 8000
IOPS, Tokyo Cabinet’s at 6500, while Berkeley DB’s at
3800. The second graph shows average latency for write
requests as the load IOPS increase. Alphard can achieve
higher IOPS with a much lower latency then either Tokyo
Cabinet or Berkeley DB. For example, the average write
latency at 8000 IOPS for Alphardraw is just under 10ms,
while it is just over 10ms for Alphardfs. For the same
value of load IOPS, both Tokyo Cabinet (4000 ms) and
Berkeley DB (48000 ms) suffer from a significantly high
write latency. The third graph shows achieved IOPS as
the size of thevalue blocks changes. At higher block
sizes, achieved IOPS is limited by the maximum device
throughput. For example at 256 KB block size, Alphard
achieves a throughput of 450 MB/s, compared to 300
MB/s for Tokyo Cabinet, and 56 MB/s for Berkeley DB.

4.2.3 Read and Write Performance

Figure 4 compares performance when the load includes a
mix of reads and writes. As the load IOPS increase, the
achieved IOPS and write latency do not change signifi-
cantly in case of Alphard or Berkeley DB. Performance of
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Figure 3: Write Performance . Results for workloads consisting 50% writes and 50% deletes. The first two graphs show the achieved
IOPS and write latency as the target IOPS is varied. The third graph shows achieved IOPS for various block sizes.
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Figure 4: Reads+Writes Performance . Results for workloads consisting 50% reads, 25% writes and 25% deletes. First three graphs
are as above; the fourth plots the observed read latency for various target IOPS.

Tokyo Cabinet does improve with an increase in the num-
ber of read requests in the mix. Even when read requests
are added to the mix, Alphard outperforms Berkeley DB
and Tokyo Cabinet in both throughput and latency.

5 Related Work
The number of existing key-value stores is far too many
to have a comprehensive comparison in this paper; we in-
stead direct the reader to a recent survey of popular key-
value stores [11]. FAWN-KV [2] comes closest to Al-
phard in terms of being specifically designed for use on
SSDs; they both have in-memory data structures to speed
lookups and reduce the number of I/Os, but are designed
for very different environments. FAWN-KV is designed
for good read performance on “wimpy” nodes having a
few Gigabytes of flash satisfying an energy consumption
budget; in contrast, Alphard is designed for write perfor-
mance on “beefy” nodes having at least an order of magni-
tude more flash. FAWN-KV’s evaluation focuses on rela-
tively small objects (< 1KB) as compared to Alphard that
expects larger objects on average.

6 Conclusions
In spite of the popularity of key-value stores, bench-
marking tools to evaluate them lag behind. We de-
veloped KVZone specifically for key-value store eval-
uation, born out of our own experiences in identify-
ing a suitable key-value store for write-intensive work-
loads on an SSD; we have released it for public use
at http://www.nec-labs.com/research/robust/

robust_grid-website/software.php. Using KV-
Zone we were able to quantitatively assess the strengths
and weaknesses of popular local key-value stores such as

Berkeley DB, Tokyo Cabinet, and SQLite, and discovered
they achieve less than half of the expected performance.
We thus developed Alphard to close this gap, particularly
well-suited for write-intensive workloads on SSDs. Our
evaluation shows that it beats the competition comfortably
for all relevant workloads, providing a useful addition to
the repertoire of local key-value stores. We believe more
systemic effort is needed to build better tools to support
the evaluation and design of key-value stores in the future.
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