
Systems and Internet Infrastructure Security Laboratory (SIIS) Page

On Dynamic Malware Payloads
Aimed at Programmable Logic

Controllers

Stephen McLaughlin
Penn State

1

smclaugh@cse.psu.edu

Wednesday, August 10, 2011

mailto:smclaugh@cse.psu.edu
mailto:smclaugh@cse.psu.edu

Recommended Best Practice: Defense in Depth

The new protocols and communication standards that are providing increased interoperability
and control in the control system community are the same technologies that have been exploited
and compromised in the Internet and networking domains. Historically, control system security
meant locating and identifying problems in a closed-loop system; now unauthorized intrusion or
attacks are evolving issues to be addressed.

Figure 1 illustrates the traditional separation of corporate architectures and control domains. This
architecture provided means for data sharing, data acquisition, peer-to-peer data exchange, and
other business operations. However, the security of any given system was based on the fact that
few, if any, understood the intricate architecture or the operational mechanics of the resources on
the controls system LAN. This ‘security by obscurity’ works well for environments that have no
external communication connections which allow an organization to focus on physical security.

Figure 1 – Traditional isolation of corporate and control domains

4

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

SCADA and PLCs
• PLCs are the lowest level of computation in the SCADA system

2

Image source: Control Systems Cyber Security: Defense in Depth Strategies. Idaho National Laboratory. 2006

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Stuxnet’s PLC payload

3

W32.Stuxnet Dossier

Page 36

Security Response

Sequence blocks
Sequences A and B are extremely close and functionally equivalent. They consist of 17 blocks, the malicious
DP_RECV replacement block, as well as the infected OB1 and OB35 blocks. Figure 21 shows the connections
between the blocks.

Legend:
Arrows between two code blocks mean that a block calls or executes another block.
The pink block represents the main block, called from the infected OB1.
White blocks are standard Stuxnet code blocks.
Yellow blocks are also Stuxnet blocks, but copied from the Simatic library of standard blocks. They execute common functions, such as timestamp com-
parison.
Gray blocks are not part of Stuxnet; they’re system function blocks, part of the operating system running on the PLC. They’re used to execute system
tasks, such as reading the system clock (SFC1).

Green blocks represent Stuxnet data blocks.

Note that block names are misleading (except for the yellow and gray blocks), in the sense that they do not re-
flect the real purpose of the block.

Sequences A and B intercept packets on the Profibus by using the DP_RECV hooking block. Based on the values
found in these blocks, other packets are generated and sent on the wire. This is controlled by a complex state
machine, implemented in the various code blocks that make the sequence. One can recognize an infected PLC in
a clean environment by examining blocks OB1 and OB35. The infected OB1 starts with the following instructions,
meant to start the infection sequence and potentially short-circuit OB1 execution on specific conditions:

UC FC1865
POP
L DW#16#DEADF007
==D
BEC
L DW#16#0
L DW#16#0

 Figure 21

Connections between sequence blocks

Image source: W32.Stuxnet Dossier. Nicolas Falliere, et al. 2010

Stuxnet delivered a precompiled payload. The specifics details of the target
had to be known ahead of time.

Against any other target, the payload would have random or no affect.

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

This talk

4

Are dynamic payloads for unknown or
partially known targets possible?

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

An engineering problem
• Writing malware to overcome the obscurity of process

control systems is an engineering problem.

• This problem can be solved, as can all software engineering
problems, through a breaking down into modular steps.

5

PLC Plant/
Fieldbus

Process
Analysis

Payload
Generation

Process
Representation

PLC
Code

Config
data

Malicious
PLC Code

Dynamic Payload

SCADA MTU Plant

Delivery Mechanism

Zero day

Rootkit

Insider,
etc.

Internet/
SCADA/

LAN

①

②
③

④

Payload
Goal

Format
Library

Figure 2: The basic steps for constructing a dynamic payload based on observations taken from within a process

control system.

Because the payload was precompiled, it is believed

that Stuxnet’s authors had previous knowledge of the ex-

act layout of the target process and plant. Thus, it is un-

likely that its attack would succeed against any other fa-

cility besides the intended one. This need for a priori
knowledge of the target is assumed to be the main mit-

igating factor against the more common occurrence of

PLC malware. It is this belief that motivates our inspec-

tion of dynamic payload generation for PLC malware.

3 Dynamic Payloads

Figure 2 shows the basic steps PLC malware take to dy-

namically construct a payload against an unknown pro-

cess. As with any malware, it must first infect (1) one

or more hosts before executing its payload. Infection

may occur via viral propagation, Trojan horse, insiders,

or any other attack vector. PLC malware ultimately tries

to infect a host that can reach a PLC. Because the details

of the process are unknown at this point, a payload can-

not yet be directly uploaded. Instead, the PLC’s memory

contents are read (2) for a step called process analysis,

which produces a canonical process representation (3).

This may require the use of a format library to decode

proprietary binary formats. The process representation

is then used by the subsequent payload generation step

to create a payload that will achieve the payload goal in

the plant (4). If payload generation is successful, then a

payload tailored to the specific process may be uploaded

to the PLC and executed.

For the remainder of this section, we describe tech-

niques by which each of the above steps may be

achieved.

3.1 Payload Goals
A payload goal specifies the behavior that the adversary

wishes to cause in the plant. It may be as simple as “Open

all breakers in the electrical substation,” or as complex

as “Identify all incompatible regions of track and signal

two trains to enter a conflicting route.” It may also be

very broad in scope, e.g. “Identify and violate all safety

checks maintained by the PLC.” Regardless of the ex-

act goal, the dynamic payload will ultimately be a se-

quence of one or more assignments to output variables

that achieves the goal in the plant. Thus, the payload goal

can be thought of as a template for the dynamic payload,

with the specifics being filled in by the steps of process

analysis and payload generation.

3.2 Process Analysis
The job of process analysis is to convert the logic and

data read from a PLC into a canonical process represen-

tation. A complete process representation should contain

both a canonicalization of the PLC code, and the map-

ping from input and output variables to their correspond-

ing sensors and devices in the plant. While the code can

always be obtained by reading the PLC’s function blocks,

it may not be possible to obtain or infer the device map-

ping. The challenges associated with each task are de-

scribed as follows.

Recovering the Boolean equations. The first step to-

wards obtaining the process representation is to recover

the set of Boolean equations Φ that represents the logic.

Similar to the procedure for reverse engineering a typ-

ical computer program, the native code will have to be

disassembled into mnemonics and then transformed to

3

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Code reuse

6

PLC Plant/
Fieldbus

Process
Analysis

Payload
Generation

Process
Representation

PLC
Code

Config
data

Malicious
PLC Code

Dynamic Payload

SCADA MTU Plant

Delivery Mechanism

Zero day

Rootkit

Insider,
etc.

Internet/
SCADA/

LAN

①

②
③

④

Payload
Goal

Format
Library

Figure 2: The basic steps for constructing a dynamic payload based on observations taken from within a process

control system.

Because the payload was precompiled, it is believed

that Stuxnet’s authors had previous knowledge of the ex-

act layout of the target process and plant. Thus, it is un-

likely that its attack would succeed against any other fa-

cility besides the intended one. This need for a priori
knowledge of the target is assumed to be the main mit-

igating factor against the more common occurrence of

PLC malware. It is this belief that motivates our inspec-

tion of dynamic payload generation for PLC malware.

3 Dynamic Payloads

Figure 2 shows the basic steps PLC malware take to dy-

namically construct a payload against an unknown pro-

cess. As with any malware, it must first infect (1) one

or more hosts before executing its payload. Infection

may occur via viral propagation, Trojan horse, insiders,

or any other attack vector. PLC malware ultimately tries

to infect a host that can reach a PLC. Because the details

of the process are unknown at this point, a payload can-

not yet be directly uploaded. Instead, the PLC’s memory

contents are read (2) for a step called process analysis,

which produces a canonical process representation (3).

This may require the use of a format library to decode

proprietary binary formats. The process representation

is then used by the subsequent payload generation step

to create a payload that will achieve the payload goal in

the plant (4). If payload generation is successful, then a

payload tailored to the specific process may be uploaded

to the PLC and executed.

For the remainder of this section, we describe tech-

niques by which each of the above steps may be

achieved.

3.1 Payload Goals
A payload goal specifies the behavior that the adversary

wishes to cause in the plant. It may be as simple as “Open

all breakers in the electrical substation,” or as complex

as “Identify all incompatible regions of track and signal

two trains to enter a conflicting route.” It may also be

very broad in scope, e.g. “Identify and violate all safety

checks maintained by the PLC.” Regardless of the ex-

act goal, the dynamic payload will ultimately be a se-

quence of one or more assignments to output variables

that achieves the goal in the plant. Thus, the payload goal

can be thought of as a template for the dynamic payload,

with the specifics being filled in by the steps of process

analysis and payload generation.

3.2 Process Analysis
The job of process analysis is to convert the logic and

data read from a PLC into a canonical process represen-

tation. A complete process representation should contain

both a canonicalization of the PLC code, and the map-

ping from input and output variables to their correspond-

ing sensors and devices in the plant. While the code can

always be obtained by reading the PLC’s function blocks,

it may not be possible to obtain or infer the device map-

ping. The challenges associated with each task are de-

scribed as follows.

Recovering the Boolean equations. The first step to-

wards obtaining the process representation is to recover

the set of Boolean equations Φ that represents the logic.

Similar to the procedure for reverse engineering a typ-

ical computer program, the native code will have to be

disassembled into mnemonics and then transformed to

3

Ideally, the adversary need only specify the payload goal.

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Code reuse

7

PLC Plant/
Fieldbus

Process
Analysis

Payload
Generation

Process
Representation

PLC
Code

Config
data

Malicious
PLC Code

Dynamic Payload

SCADA MTU Plant

Delivery Mechanism

Zero day

Rootkit

Insider,
etc.

Internet/
SCADA/

LAN

①

②
③

④

Payload
Goal

Format
Library

Figure 2: The basic steps for constructing a dynamic payload based on observations taken from within a process

control system.

Because the payload was precompiled, it is believed

that Stuxnet’s authors had previous knowledge of the ex-

act layout of the target process and plant. Thus, it is un-

likely that its attack would succeed against any other fa-

cility besides the intended one. This need for a priori
knowledge of the target is assumed to be the main mit-

igating factor against the more common occurrence of

PLC malware. It is this belief that motivates our inspec-

tion of dynamic payload generation for PLC malware.

3 Dynamic Payloads

Figure 2 shows the basic steps PLC malware take to dy-

namically construct a payload against an unknown pro-

cess. As with any malware, it must first infect (1) one

or more hosts before executing its payload. Infection

may occur via viral propagation, Trojan horse, insiders,

or any other attack vector. PLC malware ultimately tries

to infect a host that can reach a PLC. Because the details

of the process are unknown at this point, a payload can-

not yet be directly uploaded. Instead, the PLC’s memory

contents are read (2) for a step called process analysis,

which produces a canonical process representation (3).

This may require the use of a format library to decode

proprietary binary formats. The process representation

is then used by the subsequent payload generation step

to create a payload that will achieve the payload goal in

the plant (4). If payload generation is successful, then a

payload tailored to the specific process may be uploaded

to the PLC and executed.

For the remainder of this section, we describe tech-

niques by which each of the above steps may be

achieved.

3.1 Payload Goals
A payload goal specifies the behavior that the adversary

wishes to cause in the plant. It may be as simple as “Open

all breakers in the electrical substation,” or as complex

as “Identify all incompatible regions of track and signal

two trains to enter a conflicting route.” It may also be

very broad in scope, e.g. “Identify and violate all safety

checks maintained by the PLC.” Regardless of the ex-

act goal, the dynamic payload will ultimately be a se-

quence of one or more assignments to output variables

that achieves the goal in the plant. Thus, the payload goal

can be thought of as a template for the dynamic payload,

with the specifics being filled in by the steps of process

analysis and payload generation.

3.2 Process Analysis
The job of process analysis is to convert the logic and

data read from a PLC into a canonical process represen-

tation. A complete process representation should contain

both a canonicalization of the PLC code, and the map-

ping from input and output variables to their correspond-

ing sensors and devices in the plant. While the code can

always be obtained by reading the PLC’s function blocks,

it may not be possible to obtain or infer the device map-

ping. The challenges associated with each task are de-

scribed as follows.

Recovering the Boolean equations. The first step to-

wards obtaining the process representation is to recover

the set of Boolean equations Φ that represents the logic.

Similar to the procedure for reverse engineering a typ-

ical computer program, the native code will have to be

disassembled into mnemonics and then transformed to

3

The format library contains platform-depended
disassemblers and device IDs.

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Logic programming
• Logic programs simulate Boolean circuits.

• A PLC program maps a set of input variables to a set of output
variables .

• Values for are received from the sensors in the plant, and values
in are sent to the plant to manipulate devices.

• A set of internal state variables and timer variables are also
available.

• A logic program is a set of expressions s.t.

• Note that in practice, we can often differentiate the four types of
variables.

8

I
O

I
O

C T

Φ

∀(y ← φ) ∈ Φ,Var(φ) ⊆ I ∪O ∪ C ∪ T and y ∈ O ∪ C ∪ T

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A pedestrian crossing

9

Signal
Box

tg, ty, tr
pg, pr

pressed

(I)

(O)

pedestrian

traffic

Figure 1: Pedestrian crossing with signal box inputs and

outputs labeled.

The problem of autonomously generating a PLC pay-

load is broken down into several steps. First, the mal-

ware author must specify a goal to be carried out in one

or more target control systems. Once the PLC malware is

inside the control system, it must at least read the PLC’s

code and data memory to obtain clues about the process

structure and operations. Examples of such clues that

will be covered later are the process fieldbus IDs of de-

vices in the plant and the safety interlocks that prevent

the process from entering unsafe states. If these clues are

sufficient to carry out the goal, a payload is generated

and executed on the PLC. Each of these steps will now

be detailed after a summary of PLC functionality.

2 Logic Controllers

PLCs are the real-time systems that closely monitor and

control plant devices to keep the process functioning cor-

rectly. Program execution on PLCs differs substantially

from on general-purpose computers. A PLC program,

often referred to as the logic, is executed within a loop

many times per second. Each execution is called a scan
cycle. During each scan cycle, a set of input variables I

are read from the sensors in the plant and processed by

the logic to produce a set of output variables O that dic-

tate the behavior of each physical device. The logic may

also maintain a set of internal state variables C and a set

of timer variables T . Often, the addresses referenced by

variables reveal which class it belongs to. In Siemens S7

PLCs for example, separate memory areas are used for

I , O, C , and T .

While PLCs may be programmed in a number of dif-

ferent languages, e.g. relay ladder logic, most PLC pro-

grams can be represented as a set of Boolean expres-

sions Φ. As this is a commonly used intermediate repre-

sentation for logic verification [8, 15], we adopt it here

as well. Each expression in Φ is of the form yi ← φi,

where yi ∈ O ∪ C ∪ T is the result of evaluation and

Var(φi) ⊆ I ∪ O ∪ C ∪ T is the set of variables in the

expression φi. With the exception of timers, all expres-

sions are evaluated using the values of variables at the

beginning of the scan cycle. Thus, if one Boolean ex-

pression depends on the result of another, the value of the

result from the previous scan cycle is used. In the case

of timers, the time at the exact moment of evaluation is

used.

For illustrative purposes throughout this paper, we use

a simplified traffic light system for a pedestrian street

crossing, based on the example in [11]. (See Figure 1.) In

this system, the only input variable is the button used to

request pedestrian crossing (pressed). The output vari-

ables control the signals for traffic green, yellow, and red

(tg, ty, tr) and pedestrian green and red (pg, pr). An exam-

ple of an expression in Φ for this system is:

pg ← pressed ∧ tr

which says that the pedestrian green light should be ac-

tive only if the crossing button has been pressed and traf-

fic has a red light (pg, tr ∈O and pressed ∈ I). It is a stan-

dard practice that each output variable is only assigned

once in the logic. Thus, ¬(pressed ∧ tr)→ ¬pg.

A PLC is typically programmed from commodity sys-

tems over a serial connection. The programming ma-

chine in question is called the Master Terminal Unit or

MTU. (Note that the MTU need not always be connected

to the PLC, as this may sometimes only be the case when

uploading new logic.) Along with uploading code to

PLCs, MTUs may also upload configuration parameters,

and collect plant statistics from the PLC. The MTU also

represents the main entry point for PLC malware. Typ-

ically, the only security present between the MTU and

PLC is a password-based authentication to the PLC be-

fore uploading new code. One can imagine the myriad

ways in which malicious code on the MTU could bypass

such a mechanism.

2.1 PLC Malware

Recent concerns surrounding PLC malware were

spawned from the emergence of the Stuxnet virus [21,

6].
1

Without dwelling on the alleged purpose of the

virus, we briefly describe Stuxnet’s internal mechanics

as detailed in [6]. Stuxnet had a sophisticated infec-

tion process which used code signed by two valid cer-

tificates, multivector propagation (including via USB),

and Microsoft Windows zero-day exploits. The goal

of Stuxnet’s propagation is to reach the nodes in the

SCADA system that are directly connected to the PLCs

operating the target plant, i.e. the MTUs. Once executing

on an MTU, Stuxnet uploads its payload of static code

blocks to the PLC. At this point, the process is under

malicious control.

1
There are several previous examples of malware having affected

control systems unintentionally [12].

2

Traffic green, yellow, and red (output)

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A pedestrian crossing

10

Signal
Box

tg, ty, tr
pg, pr

pressed

(I)

(O)

pedestrian

traffic

Figure 1: Pedestrian crossing with signal box inputs and

outputs labeled.

The problem of autonomously generating a PLC pay-

load is broken down into several steps. First, the mal-

ware author must specify a goal to be carried out in one

or more target control systems. Once the PLC malware is

inside the control system, it must at least read the PLC’s

code and data memory to obtain clues about the process

structure and operations. Examples of such clues that

will be covered later are the process fieldbus IDs of de-

vices in the plant and the safety interlocks that prevent

the process from entering unsafe states. If these clues are

sufficient to carry out the goal, a payload is generated

and executed on the PLC. Each of these steps will now

be detailed after a summary of PLC functionality.

2 Logic Controllers

PLCs are the real-time systems that closely monitor and

control plant devices to keep the process functioning cor-

rectly. Program execution on PLCs differs substantially

from on general-purpose computers. A PLC program,

often referred to as the logic, is executed within a loop

many times per second. Each execution is called a scan
cycle. During each scan cycle, a set of input variables I

are read from the sensors in the plant and processed by

the logic to produce a set of output variables O that dic-

tate the behavior of each physical device. The logic may

also maintain a set of internal state variables C and a set

of timer variables T . Often, the addresses referenced by

variables reveal which class it belongs to. In Siemens S7

PLCs for example, separate memory areas are used for

I , O, C , and T .

While PLCs may be programmed in a number of dif-

ferent languages, e.g. relay ladder logic, most PLC pro-

grams can be represented as a set of Boolean expres-

sions Φ. As this is a commonly used intermediate repre-

sentation for logic verification [8, 15], we adopt it here

as well. Each expression in Φ is of the form yi ← φi,

where yi ∈ O ∪ C ∪ T is the result of evaluation and

Var(φi) ⊆ I ∪ O ∪ C ∪ T is the set of variables in the

expression φi. With the exception of timers, all expres-

sions are evaluated using the values of variables at the

beginning of the scan cycle. Thus, if one Boolean ex-

pression depends on the result of another, the value of the

result from the previous scan cycle is used. In the case

of timers, the time at the exact moment of evaluation is

used.

For illustrative purposes throughout this paper, we use

a simplified traffic light system for a pedestrian street

crossing, based on the example in [11]. (See Figure 1.) In

this system, the only input variable is the button used to

request pedestrian crossing (pressed). The output vari-

ables control the signals for traffic green, yellow, and red

(tg, ty, tr) and pedestrian green and red (pg, pr). An exam-

ple of an expression in Φ for this system is:

pg ← pressed ∧ tr

which says that the pedestrian green light should be ac-

tive only if the crossing button has been pressed and traf-

fic has a red light (pg, tr ∈O and pressed ∈ I). It is a stan-

dard practice that each output variable is only assigned

once in the logic. Thus, ¬(pressed ∧ tr)→ ¬pg.

A PLC is typically programmed from commodity sys-

tems over a serial connection. The programming ma-

chine in question is called the Master Terminal Unit or

MTU. (Note that the MTU need not always be connected

to the PLC, as this may sometimes only be the case when

uploading new logic.) Along with uploading code to

PLCs, MTUs may also upload configuration parameters,

and collect plant statistics from the PLC. The MTU also

represents the main entry point for PLC malware. Typ-

ically, the only security present between the MTU and

PLC is a password-based authentication to the PLC be-

fore uploading new code. One can imagine the myriad

ways in which malicious code on the MTU could bypass

such a mechanism.

2.1 PLC Malware

Recent concerns surrounding PLC malware were

spawned from the emergence of the Stuxnet virus [21,

6].
1

Without dwelling on the alleged purpose of the

virus, we briefly describe Stuxnet’s internal mechanics

as detailed in [6]. Stuxnet had a sophisticated infec-

tion process which used code signed by two valid cer-

tificates, multivector propagation (including via USB),

and Microsoft Windows zero-day exploits. The goal

of Stuxnet’s propagation is to reach the nodes in the

SCADA system that are directly connected to the PLCs

operating the target plant, i.e. the MTUs. Once executing

on an MTU, Stuxnet uploads its payload of static code

blocks to the PLC. At this point, the process is under

malicious control.

1
There are several previous examples of malware having affected

control systems unintentionally [12].

2

Pedestrian green and red (output)

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A pedestrian crossing

11

Signal
Box

tg, ty, tr
pg, pr

pressed

(I)

(O)

pedestrian

traffic

Figure 1: Pedestrian crossing with signal box inputs and

outputs labeled.

The problem of autonomously generating a PLC pay-

load is broken down into several steps. First, the mal-

ware author must specify a goal to be carried out in one

or more target control systems. Once the PLC malware is

inside the control system, it must at least read the PLC’s

code and data memory to obtain clues about the process

structure and operations. Examples of such clues that

will be covered later are the process fieldbus IDs of de-

vices in the plant and the safety interlocks that prevent

the process from entering unsafe states. If these clues are

sufficient to carry out the goal, a payload is generated

and executed on the PLC. Each of these steps will now

be detailed after a summary of PLC functionality.

2 Logic Controllers

PLCs are the real-time systems that closely monitor and

control plant devices to keep the process functioning cor-

rectly. Program execution on PLCs differs substantially

from on general-purpose computers. A PLC program,

often referred to as the logic, is executed within a loop

many times per second. Each execution is called a scan
cycle. During each scan cycle, a set of input variables I

are read from the sensors in the plant and processed by

the logic to produce a set of output variables O that dic-

tate the behavior of each physical device. The logic may

also maintain a set of internal state variables C and a set

of timer variables T . Often, the addresses referenced by

variables reveal which class it belongs to. In Siemens S7

PLCs for example, separate memory areas are used for

I , O, C , and T .

While PLCs may be programmed in a number of dif-

ferent languages, e.g. relay ladder logic, most PLC pro-

grams can be represented as a set of Boolean expres-

sions Φ. As this is a commonly used intermediate repre-

sentation for logic verification [8, 15], we adopt it here

as well. Each expression in Φ is of the form yi ← φi,

where yi ∈ O ∪ C ∪ T is the result of evaluation and

Var(φi) ⊆ I ∪ O ∪ C ∪ T is the set of variables in the

expression φi. With the exception of timers, all expres-

sions are evaluated using the values of variables at the

beginning of the scan cycle. Thus, if one Boolean ex-

pression depends on the result of another, the value of the

result from the previous scan cycle is used. In the case

of timers, the time at the exact moment of evaluation is

used.

For illustrative purposes throughout this paper, we use

a simplified traffic light system for a pedestrian street

crossing, based on the example in [11]. (See Figure 1.) In

this system, the only input variable is the button used to

request pedestrian crossing (pressed). The output vari-

ables control the signals for traffic green, yellow, and red

(tg, ty, tr) and pedestrian green and red (pg, pr). An exam-

ple of an expression in Φ for this system is:

pg ← pressed ∧ tr

which says that the pedestrian green light should be ac-

tive only if the crossing button has been pressed and traf-

fic has a red light (pg, tr ∈O and pressed ∈ I). It is a stan-

dard practice that each output variable is only assigned

once in the logic. Thus, ¬(pressed ∧ tr)→ ¬pg.

A PLC is typically programmed from commodity sys-

tems over a serial connection. The programming ma-

chine in question is called the Master Terminal Unit or

MTU. (Note that the MTU need not always be connected

to the PLC, as this may sometimes only be the case when

uploading new logic.) Along with uploading code to

PLCs, MTUs may also upload configuration parameters,

and collect plant statistics from the PLC. The MTU also

represents the main entry point for PLC malware. Typ-

ically, the only security present between the MTU and

PLC is a password-based authentication to the PLC be-

fore uploading new code. One can imagine the myriad

ways in which malicious code on the MTU could bypass

such a mechanism.

2.1 PLC Malware

Recent concerns surrounding PLC malware were

spawned from the emergence of the Stuxnet virus [21,

6].
1

Without dwelling on the alleged purpose of the

virus, we briefly describe Stuxnet’s internal mechanics

as detailed in [6]. Stuxnet had a sophisticated infec-

tion process which used code signed by two valid cer-

tificates, multivector propagation (including via USB),

and Microsoft Windows zero-day exploits. The goal

of Stuxnet’s propagation is to reach the nodes in the

SCADA system that are directly connected to the PLCs

operating the target plant, i.e. the MTUs. Once executing

on an MTU, Stuxnet uploads its payload of static code

blocks to the PLC. At this point, the process is under

malicious control.

1
There are several previous examples of malware having affected

control systems unintentionally [12].

2

Request to cross button (input)

Wednesday, August 10, 2011

(y ← φ) = (pg ← pressed ∧ tr), Var(φ) = {pressed, tr}

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A pedestrian crossing

12

Signal
Box

tg, ty, tr
pg, pr

pressed

(I)

(O)

pedestrian

traffic

Figure 1: Pedestrian crossing with signal box inputs and

outputs labeled.

The problem of autonomously generating a PLC pay-

load is broken down into several steps. First, the mal-

ware author must specify a goal to be carried out in one

or more target control systems. Once the PLC malware is

inside the control system, it must at least read the PLC’s

code and data memory to obtain clues about the process

structure and operations. Examples of such clues that

will be covered later are the process fieldbus IDs of de-

vices in the plant and the safety interlocks that prevent

the process from entering unsafe states. If these clues are

sufficient to carry out the goal, a payload is generated

and executed on the PLC. Each of these steps will now

be detailed after a summary of PLC functionality.

2 Logic Controllers

PLCs are the real-time systems that closely monitor and

control plant devices to keep the process functioning cor-

rectly. Program execution on PLCs differs substantially

from on general-purpose computers. A PLC program,

often referred to as the logic, is executed within a loop

many times per second. Each execution is called a scan
cycle. During each scan cycle, a set of input variables I

are read from the sensors in the plant and processed by

the logic to produce a set of output variables O that dic-

tate the behavior of each physical device. The logic may

also maintain a set of internal state variables C and a set

of timer variables T . Often, the addresses referenced by

variables reveal which class it belongs to. In Siemens S7

PLCs for example, separate memory areas are used for

I , O, C , and T .

While PLCs may be programmed in a number of dif-

ferent languages, e.g. relay ladder logic, most PLC pro-

grams can be represented as a set of Boolean expres-

sions Φ. As this is a commonly used intermediate repre-

sentation for logic verification [8, 15], we adopt it here

as well. Each expression in Φ is of the form yi ← φi,

where yi ∈ O ∪ C ∪ T is the result of evaluation and

Var(φi) ⊆ I ∪ O ∪ C ∪ T is the set of variables in the

expression φi. With the exception of timers, all expres-

sions are evaluated using the values of variables at the

beginning of the scan cycle. Thus, if one Boolean ex-

pression depends on the result of another, the value of the

result from the previous scan cycle is used. In the case

of timers, the time at the exact moment of evaluation is

used.

For illustrative purposes throughout this paper, we use

a simplified traffic light system for a pedestrian street

crossing, based on the example in [11]. (See Figure 1.) In

this system, the only input variable is the button used to

request pedestrian crossing (pressed). The output vari-

ables control the signals for traffic green, yellow, and red

(tg, ty, tr) and pedestrian green and red (pg, pr). An exam-

ple of an expression in Φ for this system is:

pg ← pressed ∧ tr

which says that the pedestrian green light should be ac-

tive only if the crossing button has been pressed and traf-

fic has a red light (pg, tr ∈O and pressed ∈ I). It is a stan-

dard practice that each output variable is only assigned

once in the logic. Thus, ¬(pressed ∧ tr)→ ¬pg.

A PLC is typically programmed from commodity sys-

tems over a serial connection. The programming ma-

chine in question is called the Master Terminal Unit or

MTU. (Note that the MTU need not always be connected

to the PLC, as this may sometimes only be the case when

uploading new logic.) Along with uploading code to

PLCs, MTUs may also upload configuration parameters,

and collect plant statistics from the PLC. The MTU also

represents the main entry point for PLC malware. Typ-

ically, the only security present between the MTU and

PLC is a password-based authentication to the PLC be-

fore uploading new code. One can imagine the myriad

ways in which malicious code on the MTU could bypass

such a mechanism.

2.1 PLC Malware

Recent concerns surrounding PLC malware were

spawned from the emergence of the Stuxnet virus [21,

6].
1

Without dwelling on the alleged purpose of the

virus, we briefly describe Stuxnet’s internal mechanics

as detailed in [6]. Stuxnet had a sophisticated infec-

tion process which used code signed by two valid cer-

tificates, multivector propagation (including via USB),

and Microsoft Windows zero-day exploits. The goal

of Stuxnet’s propagation is to reach the nodes in the

SCADA system that are directly connected to the PLCs

operating the target plant, i.e. the MTUs. Once executing

on an MTU, Stuxnet uploads its payload of static code

blocks to the PLC. At this point, the process is under

malicious control.

1
There are several previous examples of malware having affected

control systems unintentionally [12].

2

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Process analysis

13

PLC Plant/
Fieldbus

Process
Analysis

Payload
Generation

Process
Representation

PLC
Code

Config
data

Malicious
PLC Code

Dynamic Payload

SCADA MTU Plant

Delivery Mechanism

Zero day

Rootkit

Insider,
etc.

Internet/
SCADA/

LAN

①

②
③

④

Payload
Goal

Format
Library

Figure 2: The basic steps for constructing a dynamic payload based on observations taken from within a process

control system.

Because the payload was precompiled, it is believed

that Stuxnet’s authors had previous knowledge of the ex-

act layout of the target process and plant. Thus, it is un-

likely that its attack would succeed against any other fa-

cility besides the intended one. This need for a priori
knowledge of the target is assumed to be the main mit-

igating factor against the more common occurrence of

PLC malware. It is this belief that motivates our inspec-

tion of dynamic payload generation for PLC malware.

3 Dynamic Payloads

Figure 2 shows the basic steps PLC malware take to dy-

namically construct a payload against an unknown pro-

cess. As with any malware, it must first infect (1) one

or more hosts before executing its payload. Infection

may occur via viral propagation, Trojan horse, insiders,

or any other attack vector. PLC malware ultimately tries

to infect a host that can reach a PLC. Because the details

of the process are unknown at this point, a payload can-

not yet be directly uploaded. Instead, the PLC’s memory

contents are read (2) for a step called process analysis,

which produces a canonical process representation (3).

This may require the use of a format library to decode

proprietary binary formats. The process representation

is then used by the subsequent payload generation step

to create a payload that will achieve the payload goal in

the plant (4). If payload generation is successful, then a

payload tailored to the specific process may be uploaded

to the PLC and executed.

For the remainder of this section, we describe tech-

niques by which each of the above steps may be

achieved.

3.1 Payload Goals
A payload goal specifies the behavior that the adversary

wishes to cause in the plant. It may be as simple as “Open

all breakers in the electrical substation,” or as complex

as “Identify all incompatible regions of track and signal

two trains to enter a conflicting route.” It may also be

very broad in scope, e.g. “Identify and violate all safety

checks maintained by the PLC.” Regardless of the ex-

act goal, the dynamic payload will ultimately be a se-

quence of one or more assignments to output variables

that achieves the goal in the plant. Thus, the payload goal

can be thought of as a template for the dynamic payload,

with the specifics being filled in by the steps of process

analysis and payload generation.

3.2 Process Analysis
The job of process analysis is to convert the logic and

data read from a PLC into a canonical process represen-

tation. A complete process representation should contain

both a canonicalization of the PLC code, and the map-

ping from input and output variables to their correspond-

ing sensors and devices in the plant. While the code can

always be obtained by reading the PLC’s function blocks,

it may not be possible to obtain or infer the device map-

ping. The challenges associated with each task are de-

scribed as follows.

Recovering the Boolean equations. The first step to-

wards obtaining the process representation is to recover

the set of Boolean equations Φ that represents the logic.

Similar to the procedure for reverse engineering a typ-

ical computer program, the native code will have to be

disassembled into mnemonics and then transformed to

3

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Process analysis: PLC code
• How do we obtain the canonical process representation

from the binary logic?

• While PLC ISAs differ between vendors, many implement
the accumulator based architecture specified by the IEC
61131-3 Instruction List (IL) language.

• Thus, converting code to a canonical format of Boolean
expressions requires two steps:

14

Φ

Binary code IL code Boolean expr’s
Disassembly: Using a
mapping from the format
library.

Logic recovery: We have
implemented in < 200 lines of
Standard ML.

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Process analysis: configuration data

• PROFINET and PROFIBUS both network PLCs to devices with some
onboard intelligence.

• Each PROFI* compliant product has a unique ID that can be queried.

• Stuxnet looked for centrifuge IDs.

• A database of such IDs can be used to map logic variables to physical
devices.

• PROFI* device IDs can be scraped from reseller product list, .GSD
files, and profibus.com.

• Collect them all!

15

Image source: profibus.com

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Payload generation

16

PLC Plant/
Fieldbus

Process
Analysis

Payload
Generation

Process
Representation

PLC
Code

Config
data

Malicious
PLC Code

Dynamic Payload

SCADA MTU Plant

Delivery Mechanism

Zero day

Rootkit

Insider,
etc.

Internet/
SCADA/

LAN

①

②
③

④

Payload
Goal

Format
Library

Figure 2: The basic steps for constructing a dynamic payload based on observations taken from within a process

control system.

Because the payload was precompiled, it is believed

that Stuxnet’s authors had previous knowledge of the ex-

act layout of the target process and plant. Thus, it is un-

likely that its attack would succeed against any other fa-

cility besides the intended one. This need for a priori
knowledge of the target is assumed to be the main mit-

igating factor against the more common occurrence of

PLC malware. It is this belief that motivates our inspec-

tion of dynamic payload generation for PLC malware.

3 Dynamic Payloads

Figure 2 shows the basic steps PLC malware take to dy-

namically construct a payload against an unknown pro-

cess. As with any malware, it must first infect (1) one

or more hosts before executing its payload. Infection

may occur via viral propagation, Trojan horse, insiders,

or any other attack vector. PLC malware ultimately tries

to infect a host that can reach a PLC. Because the details

of the process are unknown at this point, a payload can-

not yet be directly uploaded. Instead, the PLC’s memory

contents are read (2) for a step called process analysis,

which produces a canonical process representation (3).

This may require the use of a format library to decode

proprietary binary formats. The process representation

is then used by the subsequent payload generation step

to create a payload that will achieve the payload goal in

the plant (4). If payload generation is successful, then a

payload tailored to the specific process may be uploaded

to the PLC and executed.

For the remainder of this section, we describe tech-

niques by which each of the above steps may be

achieved.

3.1 Payload Goals
A payload goal specifies the behavior that the adversary

wishes to cause in the plant. It may be as simple as “Open

all breakers in the electrical substation,” or as complex

as “Identify all incompatible regions of track and signal

two trains to enter a conflicting route.” It may also be

very broad in scope, e.g. “Identify and violate all safety

checks maintained by the PLC.” Regardless of the ex-

act goal, the dynamic payload will ultimately be a se-

quence of one or more assignments to output variables

that achieves the goal in the plant. Thus, the payload goal

can be thought of as a template for the dynamic payload,

with the specifics being filled in by the steps of process

analysis and payload generation.

3.2 Process Analysis
The job of process analysis is to convert the logic and

data read from a PLC into a canonical process represen-

tation. A complete process representation should contain

both a canonicalization of the PLC code, and the map-

ping from input and output variables to their correspond-

ing sensors and devices in the plant. While the code can

always be obtained by reading the PLC’s function blocks,

it may not be possible to obtain or infer the device map-

ping. The challenges associated with each task are de-

scribed as follows.

Recovering the Boolean equations. The first step to-

wards obtaining the process representation is to recover

the set of Boolean equations Φ that represents the logic.

Similar to the procedure for reverse engineering a typ-

ical computer program, the native code will have to be

disassembled into mnemonics and then transformed to

3

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Inferring device types
• Will not always be possible to learn devices from

PROFIBUS, PROFINET, etc.

• However, if the class of plant under attack is known, certain
domain specific invariants will link variables of interest.

• For example:

‣ A time delay of a few seconds is enforced before a motor can
reverse directions.

‣ Electrical substation switchgear state changes must be executed in
specific orders.

• Of course, this requires that the adversary have some domain specific
knowledge of the target, but no target specific knowledge is needed.

17

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Safety interlocks
• Safety interlocks are invariants over the outputs of a

control system that must never be violated

• Pedestrian crossing interlock:

‣ Let and be the Boolean variables for the pedestrian
green light and the traffic green light respectively

‣ Regardless of the particulars of the light scheme, the following
must hold:

‣ May be explicit: The property is stated as a check in the logic

‣ Or implicit: The property is never violated by the logic

18

pg tg

¬(pg ∧ tg)

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Exploiting safety interlocks
• To exploit a safety interlock, the malware must

‣ 1. Extract the interlock

‣ 2. Find an assignment to some subset of that violates the
interlock

‣ 3. Send that assignment to the plant

• Extracting explicit interlocks requires finding the set:

• Extracting implicit interlocks requires verification
techniques

‣ Thus, rewriting logic to contain only implicit interlocks can
make interlock exploitation harder

19

O

{(y ← φ) ∈ Φ | y ∈ O and Var(φ) ∩O �= ∅}

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Inferring process structure
• Some processes tend to be more event-driven

while others are more logic-driven.

• The latter is most common in manufacturing, traffic
control, and sequence control applications.

• For logic-driven processes, extracting the main loop
can be useful for a number of things:

‣ Determining where to hook malicious code

‣ Finding terminal states, especially those that depend only on
outputs. (These are indicative of alarm conditions.)

20

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Process dependency graph
• Data dependency graph for

logic variables.

• Only the class of a variable is
known (input, output, state, or
timer).

• In this example (traffic light
system):

‣ The main timing loop can be
seen.

‣ o6 (alarm condition) is
interlocked to o4 and o1
(conflicting green lights).

21

o0

t2

c0

c1

c6

i0

i1

t1

o1

i2

i3

t5

c3

o2

t0

c7

c5

o4

t4

t3

o3

o6

o5

c2

c4

Figure 3: Dependency graph for traffic light control.

to differentiate between the problem of verifying a prop-

erty and finding one. Even if the verification problem is

tractable, the search space of possible properties can be

quite large. Because the verification procedure can be

quite difficult in practice, most safety properties are ex-

plicitly encoded in the process. Though it is worth not-

ing that an equivalent rewriting of a process that contains

only implicit properties could be an effective measure to

thwart some dynamic malware payloads.

Inferring Plant Structure and Purpose. Before deliv-

ering a payload, PLC malware may want to test that the

plant is of a specific class. Causing anomalous but harm-

less behavior due to misunderstanding of the purpose of

the plant is likely to cause suspicion. The plant structure

refers to the relationships (e.g. dependencies) between

plant devices. One tool for achieving this is the depen-

dency graph. Much like dependency graphs are used to

statically find flows between variables in programs, they

can be used to identify the flow of work between devices

in a plant. Questions that a dependency graph can an-

swer include which sensor inputs affect which devices,

and the ordering of devices in the process’ sequence of

events.

An example of a process dependency graph for a full-

featured traffic light control system (taken from [19]) is

shown in Figure 3. We assume that it is only known if

a variable is an input, output, state, or timer, labeled as

in, on, cn, and tn respectively. There are at least two

items of interest in the dependency graph. First, the six

timers form a cycle, indicating that the process follows

a set sequence of events in repetition. This means that

the process is inherently sequential in nature as opposed

to event driven. Second, the output variable o6 (top) de-

pends on two other output variables, o1 and o4, and is

not a dependency for any other variable. This suggests

that o6 is interlocked into o1 and o4 as a terminal condi-

tion in the process. Indeed, inspection of the ladder logic

reveals that o6 triggers an alarm condition when the two

opposing green lights controlled by o1 and o4 are simul-

taneously active. Thus, the assignment (o1← 1, o4←
1, o6← 0) will cause an unsafe state in the plant by dis-

abling the alert signal when the green lights are conflict-

ing. We have found that this same pattern reveals alarm

states in ladder logic programs for industrial processes.

Compiling The Payload. The malicious payload is a

piece of control logic that ultimately assigns values to

output variables in order to disrupt proper plant behavior

as described by the adversarial goal. In the absence of a

specific goal, a measure such as violating all safety in-

terlocks may also prove destructive. If the goal contains

assignments to devices for which no variables have been

discovered or inferred, then a payload cannot be com-

piled. Otherwise, a set of Boolean assignments is cre-

ated, and assembled back into the PLC’s native format.

(The format libraries for this step are available from most

vendors.) As was the case with Stuxnet, the malicious

assignment may be embedded within the valid logic to

remain stealthy for some time before executing.

4 Related Work
Significant work has been done in the automation of ex-

ploit discovery and execution. Penetration testing frame-

works such as Metasploit [14] and Canvas [2] use collec-

tions of known exploits to test the vulnerability of entire

networks. Increasingly, these frameworks and tools are

becoming applicable to process control systems. For ex-

ample, The White Phosphorus and SCADA+ extension

to the Canvas framework contain modules specifically

for attacking SCADA networks [13]. Additionally, re-

searchers have consistently identified vulnerabilities in

SCADA systems. One study found over the course of ten

years that SCADA systems exhibit all of the vulnerabili-

ties found in IT systems ranging from arbitrary code exe-

cution, to cross site scripting, and denial of service [16].

Just as recently, a researcher released exploits for 34 new

vulnerabilities in popular SCADA products [22].

5

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Summary
• The individual tasks needed for constructing dynamic

malware payloads seem feasible.

• Arguably, the hardest and most expensive task is the
collection of disassemblers and device databases.

• Plants can be forced to behave unsafely even if no
device information is available.

• Malware authors can leverage existing program analysis
techniques like dependency graphs to design dynamic
payload mechanisms.

• We are looking for test cases!
22

Wednesday, August 10, 2011

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Thanks!

23

smclaugh@cse.psu.edu

Wednesday, August 10, 2011

mailto:smclaugh@cse.psu.edu
mailto:smclaugh@cse.psu.edu

