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Abstract

With the discovery of the Stuxnet attack, increasing at-
tention is being paid to the potential for malware to target
Programmable Logic Controllers (PLCs). Despite much
speculation about threats from PLC malware, the popu-
lar opinion is that automated attacks against PLCs are not
practical without having a priori knowledge of the target
physical process. In this paper, we explore the problem
of designing PLC malware that can generate a dynamic
payload based on observations of the process taken from
inside the control system. This significantly lowers the
bar for attacks against PLCs. We evaluate how PLC mal-
ware may infer the structure of the physical plant and
how it can use this information to construct a dynamic
payload to achieve an adversary’s end goal. We find that
at the very least, a dynamic payload can be constructed
that causes unsafe behavior for an arbitrary process defi-
nition.

1 Introduction

A process control system is a computerized means for
regulating the behavior of a physical process called the
plant. Examples of such processes are the production
of industrial goods, the delivery of electrical power, and
the automation of transportation infrastructure. While
control systems come in several forms such as Supervi-
sory Control and Data Acquisition (SCADA) [20] and
Distributed Control Systems (DCS), they virtually all
use programmable logic controllers (PLCs) (or in some
cases automation controllers) to interface directly with
the physical equipment contained in the plant.

It is well understood that PLCs are computers, and
thus are susceptible to the same classes of attacks as
traditional IT systems [4]. The ramifications of these
attacks are however different as PLCs are responsible
for the correct and safe operation of physical processes.
With the discovery of the Stuxnet attack [21], increasing
attention is being paid to the potential for malicious code

to be uploaded directly to PLCs, giving an adversary con-
trol over the physical process. As there has been much
speculation about what malware may be capable of doing
with PLCs [9], we aim to refine the notions and problems
involved in this new frontier for malicious code.

In this paper, we consider the ways in which a PLC
may be attacked directly by an autonomous program. Of
main concern is the ability of such a program to generate
malicious payload (PLC code) that disrupts the process,
endangering workers and incurring financial loss. To do
this, the malware first gathers clues from within the con-
trol system regarding the nature of the process, the lay-
out of the physical plant, or both. These clues are then
used to generate a payload that can be uploaded to the
PLC and executed. We will describe several such types
of clues that reveal how the process is intended to work,
what types of equipment are used in the plant, and what
operations may be considered unsafe.

It is assumed that PLC malware must act au-
tonomously, without human assistance, for several rea-
sons. First, as was the case with the Stuxnet attack, an
air gap may exist between public networks and the target
PLC. Such a gap must be spanned either by propagation
through removal storage such a USB drive [6], or with
the aid of an insider. We note that for non-critical facili-
ties, this is less of an issue as Internet-enabled PLCs are
now entering the market [18, 5]. A second reason that
PLC malware must act autonomously is that it signifi-
cantly reduces the sophistication needed on the part of
its author. By assuming that PLC malware may be writ-
ten in a generic form by a few skilled individuals and
widely disseminated to unskilled insiders or script kid-
dies, we obtain a stronger adversary model for when we
later consider mitigations against PLC malware. Finally,
as will be shown later, one scenario for the use of PLC
malware is the indiscriminate attacking of any PLC onto
which it happens to propagate. This obviously cannot be
done with any specific goal in mind, and thus an attack
must be derived on the fly.
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Figure 1: Pedestrian crossing with signal box inputs and
outputs labeled.

The problem of autonomously generating a PLC pay-
load is broken down into several steps. First, the mal-
ware author must specify a goal to be carried out in one
or more target control systems. Once the PLC malware is
inside the control system, it must at least read the PLC’s
code and data memory to obtain clues about the process
structure and operations. Examples of such clues that
will be covered later are the process fieldbus IDs of de-
vices in the plant and the safety interlocks that prevent
the process from entering unsafe states. If these clues are
sufficient to carry out the goal, a payload is generated
and executed on the PLC. Each of these steps will now
be detailed after a summary of PLC functionality.

2 Logic Controllers

PLCs are the real-time systems that closely monitor and
control plant devices to keep the process functioning cor-
rectly. Program execution on PLCs differs substantially
from on general-purpose computers. A PLC program,
often referred to as the logic, is executed within a loop
many times per second. Each execution is called a scan
cycle. During each scan cycle, a set of input variables I
are read from the sensors in the plant and processed by
the logic to produce a set of output variables O that dic-
tate the behavior of each physical device. The logic may
also maintain a set of internal state variables C and a set
of timer variables 7. Often, the addresses referenced by
variables reveal which class it belongs to. In Siemens S7
PLCs for example, separate memory areas are used for
I,0,C,and 7.

While PLCs may be programmed in a number of dif-
ferent languages, e.g. relay ladder logic, most PLC pro-
grams can be represented as a set of Boolean expres-
sions ®. As this is a commonly used intermediate repre-
sentation for logic verification [8, 15], we adopt it here
as well. Each expression in ® is of the form y; < ¢;,
where y; € OU CU T is the result of evaluation and
Var(¢;) C TUOUCUT is the set of variables in the
expression ¢;. With the exception of timers, all expres-
sions are evaluated using the values of variables at the
beginning of the scan cycle. Thus, if one Boolean ex-

pression depends on the result of another, the value of the
result from the previous scan cycle is used. In the case
of timers, the time at the exact moment of evaluation is
used.

For illustrative purposes throughout this paper, we use
a simplified traffic light system for a pedestrian street
crossing, based on the example in [11]. (See Figure 1.) In
this system, the only input variable is the button used to
request pedestrian crossing (pressed). The output vari-
ables control the signals for traffic green, yellow, and red
(tg,ty,t,) and pedestrian green and red (pg, p,). An exam-
ple of an expression in ® for this system is:

Dg < pressed N\t

which says that the pedestrian green light should be ac-
tive only if the crossing button has been pressed and traf-
fic has ared light (p,,t, € O and pressed € I). Itis a stan-
dard practice that each output variable is only assigned
once in the logic. Thus, —(pressed At.) — —p,.

A PLC is typically programmed from commodity sys-
tems over a serial connection. The programming ma-
chine in question is called the Master Terminal Unit or
MTU. (Note that the MTU need not always be connected
to the PLC, as this may sometimes only be the case when
uploading new logic.) Along with uploading code to
PLCs, MTUs may also upload configuration parameters,
and collect plant statistics from the PLC. The MTU also
represents the main entry point for PLC malware. Typ-
ically, the only security present between the MTU and
PLC is a password-based authentication to the PLC be-
fore uploading new code. One can imagine the myriad
ways in which malicious code on the MTU could bypass
such a mechanism.

2.1 PLC Malware

Recent concerns surrounding PLC malware were
spawned from the emergence of the Stuxnet virus [21,
6].! Without dwelling on the alleged purpose of the
virus, we briefly describe Stuxnet’s internal mechanics
as detailed in [6]. Stuxnet had a sophisticated infec-
tion process which used code signed by two valid cer-
tificates, multivector propagation (including via USB),
and Microsoft Windows zero-day exploits. The goal
of Stuxnet’s propagation is to reach the nodes in the
SCADA system that are directly connected to the PLCs
operating the target plant, i.e. the MTUs. Once executing
on an MTU, Stuxnet uploads its payload of static code
blocks to the PLC. At this point, the process is under
malicious control.

IThere are several previous examples of malware having affected
control systems unintentionally [12].
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Figure 2: The basic steps for constructing a dynamic payload based on observations taken from within a process

control system.

Because the payload was precompiled, it is believed
that Stuxnet’s authors had previous knowledge of the ex-
act layout of the target process and plant. Thus, it is un-
likely that its attack would succeed against any other fa-
cility besides the intended one. This need for a priori
knowledge of the target is assumed to be the main mit-
igating factor against the more common occurrence of
PLC malware. It is this belief that motivates our inspec-
tion of dynamic payload generation for PLC malware.

3 Dynamic Payloads

Figure 2 shows the basic steps PLC malware take to dy-
namically construct a payload against an unknown pro-
cess. As with any malware, it must first infect (1) one
or more hosts before executing its payload. Infection
may occur via viral propagation, Trojan horse, insiders,
or any other attack vector. PLC malware ultimately tries
to infect a host that can reach a PLC. Because the details
of the process are unknown at this point, a payload can-
not yet be directly uploaded. Instead, the PLC’s memory
contents are read (2) for a step called process analysis,
which produces a canonical process representation (3).
This may require the use of a format library to decode
proprietary binary formats. The process representation
is then used by the subsequent payload generation step
to create a payload that will achieve the payload goal in
the plant (4). If payload generation is successful, then a
payload tailored to the specific process may be uploaded
to the PLC and executed.

For the remainder of this section, we describe tech-
niques by which each of the above steps may be
achieved.

3.1 Payload Goals

A payload goal specifies the behavior that the adversary
wishes to cause in the plant. It may be as simple as “Open
all breakers in the electrical substation,” or as complex
as “Identify all incompatible regions of track and signal
two trains to enter a conflicting route.” It may also be
very broad in scope, e.g. “Identify and violate all safety
checks maintained by the PLC.” Regardless of the ex-
act goal, the dynamic payload will ultimately be a se-
quence of one or more assignments to output variables
that achieves the goal in the plant. Thus, the payload goal
can be thought of as a template for the dynamic payload,
with the specifics being filled in by the steps of process
analysis and payload generation.

3.2 Process Analysis

The job of process analysis is to convert the logic and
data read from a PLC into a canonical process represen-
tation. A complete process representation should contain
both a canonicalization of the PLC code, and the map-
ping from input and output variables to their correspond-
ing sensors and devices in the plant. While the code can
always be obtained by reading the PLC’s function blocks,
it may not be possible to obtain or infer the device map-
ping. The challenges associated with each task are de-
scribed as follows.

Recovering the Boolean equations. The first step to-
wards obtaining the process representation is to recover
the set of Boolean equations & that represents the logic.
Similar to the procedure for reverse engineering a typ-
ical computer program, the native code will have to be
disassembled into mnemonics and then transformed to



the higher-level representation. The disassembling will
require one module in the format library for each native
binary execution format.

A good candidate for mnemonic language is the IEC
61131-3 Instruction List (IL) language [3]. IL is an
assembly language for accumulator-based architectures
that is supported at least partially by most popular
vendors including Siemens, Rockwell Automation, and
ABB. Because IL is accumulator based, it can be con-
verted to a set of Boolean equations via a symbolic ex-
ecution tracking the logic accumulator. As a proof of
concept, we wrote a simple program to recover Boolean
equations from Siemens’ version of IL (called statement
list) in under 200 lines of Standard ML code. Previ-
ous investigations have shown that the mapping for dis-
assembly can be reverse engineered with concentrated
manual effort [6].

Discovering Plant Devices. Given the capabilities of
modern high-end PLCs, it is in some cases possible to ex-
tract a description of the plant directly from a PLC’s con-
figuration data. A prime example of this is the emerging
use of process fieldbuses such as Profibus and Profinet,
which is quickly becoming a dominant solution for in-
dustrial Ethernet [1]. In these protocols, each piece of
plant equipment identifies itself by a unique ID number
that specifies its vendor and model. By collecting the de-
vice IDs, PLC malware may infer higher-level aspects of
plant behavior such as which safety properties are most
critical. Fieldbus device information may be acquired in
two ways: by querying system configuration data in the
PLC or by executing a small fieldbus scan on the PLC.
The former is stored in system data blocks in Siemens
PLC’s and the latter can be achieved by uploading the
scanner program to the PLC from the infected MTU.

The device IDs themselves reveal no semantic infor-
mation about the nature of a device or its purpose. How-
ever, there are Internet databases, e.g. on the Profibus
website, that contain pairings of device ID with ad-
ditional device information. These databases may be
scraped by PLC malware authors. One additional com-
plication arises from the fact that device information is
collected via a specialized network protocol. Because
fieldbus-enabled devices are not connected directly to the
PLC’s input and output ports, PLC malware must pig-
gyback on existing fieldbus interface code to send com-
mands to devices.

Inferring Plant Device Types. While the target PLC
may not support fieldbus communication with devices, it
may still be possible to infer the types of devices in the
plant. This will however require some additional hints
to the malware from its author regarding the nature of
the plant. For example, if the target plant is a rail yard,
then it is known that the two most common devices are

signals and switches. One common safety requirement
for rail yard automation is that a signal be activated sev-
eral seconds before a switch is activated [10]. Pairs of
signals and switches may be identified by searching for
logic variables that are connected by such timing delays.
Similar ordering relationships exist in the manufacturing
processes, and the operation of switchgear in electrical
substations [17].

3.3 Payload Generation

The payload generation step produces a PLC program
that will execute the payload goal in a specific plant. It
should also be recognized if this is not possible given the
available information about the process. Payload gener-
ation may result with infeasible if either the process de-
scription contains insufficient information about the pro-
cess to instantiate the payload goal, or if the goal is not
relevant to the structure of the process.

Inferring Safety Interlocks. A safety interlock is a
check in a PLC’s logic that attempts to ensure the plant
never enters some unsafe state. For example, an interlock
may be used to make sure that an electrical substation
only performs one switching operation at a time [17].
From the perspective of PLC malware, the safety inter-
locks offer a definition of how to make the plant perform
unsafe operations. It may obtain the set of interlocks by
analysis of the set of Boolean equations in the process
representation.

Formally, safety interlocks my be stated as relation-
ships among the variables in O. We can illustrate a basic
interlock using the pedestrian crossing. The output vari-
ables p, and p, control the pedestrian’s red and green
lights respectively, and ¢, and ¢, control the red and green
lights for traffic. A light is turned on only when its vari-
able is true. Without even examining the implementa-
tion, one can imagine some interlocking properties. For
example the state p, At, should never occur, or else traf-
fic might conflict with pedestrians crossing. To ensure
that this does not happen, an interlock statement such as
DPg — —tg should be added to the logic. The presence of
such a statement is immediately indicative to PLC mal-
ware that sending the signals p, = 1 and #; = 1 to the
plant will cause an unsafe state, regardless of the mean-
ing of the variables p, and .

Of course, the property —(pg At,) may be implicit in
the implementation. For example, it may have been ver-
ified via formal methods that all executions preserve the
desired property. For such implicit safety properties, it
is not guaranteed that PLC malware can always infer an
unsafe input to the plant (especially when the number of
variables in the property becomes large). A significant
body of work exists on property verification for control
systems [8, 15, 7, 11, 10], which may be leveraged to
find implicit safety properties. It is however important
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Figure 3: Dependency graph for traffic light control.

to differentiate between the problem of verifying a prop-
erty and finding one. Even if the verification problem is
tractable, the search space of possible properties can be
quite large. Because the verification procedure can be
quite difficult in practice, most safety properties are ex-
plicitly encoded in the process. Though it is worth not-
ing that an equivalent rewriting of a process that contains
only implicit properties could be an effective measure to
thwart some dynamic malware payloads.

Inferring Plant Structure and Purpose. Before deliv-
ering a payload, PLC malware may want to test that the
plant is of a specific class. Causing anomalous but harm-
less behavior due to misunderstanding of the purpose of
the plant is likely to cause suspicion. The plant structure
refers to the relationships (e.g. dependencies) between
plant devices. One tool for achieving this is the depen-
dency graph. Much like dependency graphs are used to
statically find flows between variables in programs, they
can be used to identify the flow of work between devices
in a plant. Questions that a dependency graph can an-
swer include which sensor inputs affect which devices,
and the ordering of devices in the process’ sequence of
events.

An example of a process dependency graph for a full-
featured traffic light control system (taken from [19]) is
shown in Figure 3. We assume that it is only known if
a variable is an input, output, state, or timer, labeled as
in, on, cn, and tn respectively. There are at least two
items of interest in the dependency graph. First, the six
timers form a cycle, indicating that the process follows
a set sequence of events in repetition. This means that
the process is inherently sequential in nature as opposed
to event driven. Second, the output variable 06 (top) de-
pends on two other output variables, ol and o4, and is
not a dependency for any other variable. This suggests
that 06 is interlocked into ol and 04 as a terminal condi-
tion in the process. Indeed, inspection of the ladder logic
reveals that 06 triggers an alarm condition when the two
opposing green lights controlled by ol and o4 are simul-
taneously active. Thus, the assignment (ol < 1, 04 «—
1, 06 < 0) will cause an unsafe state in the plant by dis-
abling the alert signal when the green lights are conflict-
ing. We have found that this same pattern reveals alarm
states in ladder logic programs for industrial processes.

Compiling The Payload. The malicious payload is a
piece of control logic that ultimately assigns values to
output variables in order to disrupt proper plant behavior
as described by the adversarial goal. In the absence of a
specific goal, a measure such as violating all safety in-
terlocks may also prove destructive. If the goal contains
assignments to devices for which no variables have been
discovered or inferred, then a payload cannot be com-
piled. Otherwise, a set of Boolean assignments is cre-
ated, and assembled back into the PLC’s native format.
(The format libraries for this step are available from most
vendors.) As was the case with Stuxnet, the malicious
assignment may be embedded within the valid logic to
remain stealthy for some time before executing.

4 Related Work

Significant work has been done in the automation of ex-
ploit discovery and execution. Penetration testing frame-
works such as Metasploit [ 14] and Canvas [2] use collec-
tions of known exploits to test the vulnerability of entire
networks. Increasingly, these frameworks and tools are
becoming applicable to process control systems. For ex-
ample, The White Phosphorus and SCADA+ extension
to the Canvas framework contain modules specifically
for attacking SCADA networks [13]. Additionally, re-
searchers have consistently identified vulnerabilities in
SCADA systems. One study found over the course of ten
years that SCADA systems exhibit all of the vulnerabili-
ties found in IT systems ranging from arbitrary code exe-
cution, to cross site scripting, and denial of service [16].
Just as recently, a researcher released exploits for 34 new
vulnerabilities in popular SCADA products [22].



The framework for attacking PLCs presented in this
paper is complementary to these efforts. Often, compro-
mising the SCADA network to reach a PLC is a nec-
essary prerequisite for the dynamic payload approach
described here. The existing attack frameworks how-
ever, lack mechanisms to dynamically derive PLC at-
tacks, which is a significantly different problem.

5 Summary

We have described the problem of designing PLC mal-
ware that automatically generates a malicious payload
against a process control system, with little or no prior
knowledge. Open problems that we have identified in-
clude the definition of payload goals, the disassembly
and reverse engineering of logic programs, the discov-
ery and inference of plant devices and the relationships
between these devices, and the construction of a mali-
cious payload to achieve an adversarial goal in the plant.
Each of these problems has been fit into a framework
of payload generation that significantly lowers the bar of
expertise for those wishing to disrupt process control sys-
tems. Along with the development of each of these steps,
future work in this area must include practical measures
that can be taken to secure PLCs against dynamic mali-
cious payloads.
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