Building Secure Robot Applications

Murph Finnicum
University of Illinois

Abstract

This position paper recognizes that general purpose
robots will become increasingly common and argues that
we need to prepare ourselves to deal with security for
robot applications in an intelligent way. We discuss
ways that robots are similar to traditional computing de-
vices and ways that robots are different, and we describe
the challenges that arise. We propose a framework for
providing security for robot applications and we discuss
three potential robot applications: a “fetch coffee” app,
a “pretend to be a Labrador” app, and a “is my advisor
in his office and available” app. We discuss some of the
security needs of these applications and propose a few
potential ways to address those security needs.

1 Introduction

Robots are being used for an increasingly wide range
of applications. Much of the pioneering work on
robotics focused on building industrial robots where
robots helped automate portions of the manufacturing
process. More recently, robots have seen increasing use
for military applications [13], cleaning floors [8], mow-
ing lawns [12], driving cars [17], and to help with reha-
bilitation by acting as realistic pets [11].

It is our position that robots should be viewed as gen-
eral purpose computing devices and should be capable
of running robot apps. By robot apps we do not mean
Emacs and gcc, but rather robots should support a secure
and general purpose programming environment for con-
trolling the robot itself. In our vision we hope to make
robots as easy to program as mobile phones, support mul-
tiple robot apps at the same time, and provide this func-
tionality with appropriate security mechanisms in place
from the beginning. Although many of the same secu-
rity techniques we use on more traditional computing en-
vironments will certainly apply to robots as well (e.g.,
software least privilege and modularity), robots are fun-

Samuel T. King
University of Illinois

damentally different than traditional computer systems in
interesting and novel ways.

We argue that robot policies and interfaces are best
described in terms of higher-level abstractions, and that
the application framework should embrace these abstrac-
tions and deal with them as first-order concepts.

In this paper we discuss ways that robots are different
than traditional computer systems and the security chal-
lenges that arise from these differences, and we posit a
few directions that this new research area might take.

2 Challenges

Robotic platforms are built on top of traditional comput-
ing systems, and thus are vulnerable to the same security
issues that they are [3]. However, robotics provide a fun-
damentally different platform than traditional computer
systems that brings with it an entirely new set of security
issues.

In this section we discuss ways that robots are similar
to traditional computing platforms, and ways that robots
are different than traditional computing platforms and the
challenges that arise from these differences.

2.1 Similarities

Many robotic platforms use commodity hardware and
software as components. For example, our robot, Isaac
(Figure 1), uses a netbook running Linux as its main con-
trol unit. In order for the robot to be secure, it is neces-
sary that that machine be secure as well. Compromising
arobot’s operating system via a kernel-level remote code
execution exploit would render the robot entirely com-
promised as well. One of our main sensors is a Kinect
that provides video and depth information and uses de-
vice drivers to enable software to interact with the sensor
data. Robotic systems also contains components outside
of the robot itself: a remote server for storing logs or per-
forming computationally expensive calculations, or for



Figure 1: Our experimental robot platform. To experi-
ment with secure robots we built a robot using an iRobot
Create, a netbook running Linux, and a Kinect for extra
sensing.

providing commands to the robot. These components
communicate with each other via traditional networks,
such as WiFi. These remote systems and networks need
to be accounted for when building secure robot applica-
tions.

2.2 Differences

Robots differ from traditional computer systems in two
key ways. First, robots can move autonomously and
they have manipulators (e.g., arms) that can affect the
physical world. Second, their underlying algorithms are
fundamentally probabilistic. These differences provide a
number of key challenges for designers of more secure
robot systems.

2.2.1 Robot mobility and actuation

Robots have the ability to directly interact with the world
around them on a level that traditional computer systems
do not. This both makes it possible for their security
measures to be compromised, and gives an attacker much
more ability if they are successful. While a non-robotic
system might have some ability to affect its environment,
it is usually very limited well defined. A robotic sys-
tem, given an manipulator like a robotic arm, is capa-
ble of doing almost anything a human can. Robots can
even modify themselves - using an actuator to reposition
one of their cameras, reconnecting an intentionally dis-
connected sensor, perhaps even intentionally sabotaging

their safety devices. In most situations, it is accepted that
if you have physical access to a computer, then you can
gain access to its information. A robot potentially has
this access to itself.

Being mobile, a robot can even position itself wher-
ever it needs to be. If you’re working on a robot in a
safe environment (e.g., workshop), it is likely capable of
relocating itself to an unsafe environment (e.g., the chil-
dren’s playroom, or outdoors). It is possible for a robot
to just drive away and be lost somewhere. If your robot
has a microphone, it can reposition itself to be able to
hear you when you think you’re out of listening range.
An attacker could even steal your robot (and any posses-
sions it grabs) by remotely controlling it to simply drive
away from your house.

2.2.2 Probabilistic algorithms

Research from the last decade has shown how robot
designers can use probabilistic techniques to build ro-
bust mobile robots. Researchers have developed the
mathematical underpinnings and algorithms for reason-
ing about robot locomotion and for determining where a
robot is currently located (localization) in unknown envi-
ronments and with noisy sensor data [16]. They have ap-
plied these techniques to robots for leading tours in mu-
seums [15] and building cars that drive themselves [17].

However, the probabilistic nature of these systems
complicates security and raises new questions. Because
the robot never knows for sure who it is interacting with
or where it is located, security decisions that use this in-
formation need to take the probabilistic nature of this
data into account. Additionally, these systems are ro-
bust in unknown and noisy environments, but have been
largely untested with an active adversarial model where
an attacker is trying to impersonate a legitimate user.

3 A security framework for robot apps

As general purpose robots become more common, we
will begin to see a rise in commodity software for robots.
There will be apps to enable your robot to interact
with specific shops, perform specific chores, or generate
specific hilarious noises. Software developers will re-
quire robot-platform-independent frameworks to accom-
modate their applications. Inevitably, we will see some
form of “robot app store”.

Each robot platform will be able to implement high-
level functionality in different ways — movement can be
implemented with wheels, legs, treads, etc. To this end,
the software will communicate with the framework at a
higher level than traditional framework/application inter-
faces. Commands like “Move to location X instead of
“Draw an ‘OK’ button”.



Security, as well, will have to be implemented through
higher level abstractions. Instead of sockets and files and
processes, we will have to work with people, places, and
actions. It will be important to figure out the correct ab-
stractions that enable security to be defined at this level.
It is important that we also respect privacy and do not al-
low the applications access to more personal information
than is required.

In this section we discuss three aspects of our pro-
posed framework for building secure robot applications.
First, we discuss the notion of user identification in the
context of a robot that buys coffee for users. Second, we
propose a robot “app store” and discuss ideas on identi-
fying abstractions that one could use to expose security
relevant information. Third, we describe notions of pri-
vacy and how this can build off of the work done on dis-
tributed social network privacy to help users make deci-
sions about security and privacy with robot applications.

3.1 Identifying users securely

One fundamental aspect of robot security will be iden-
tifying users. An example of this comes from a sys-
tem we call CLASS, where we programmed our robot,
Isaac, to go fetch coffee for a user. The application re-
quired a concept of who it was fetching coffee for so
it could find them again, but there was no need for it
to actually know the user’s personal details. To imple-
ment this, we added an API that identified a user and
returned a handle that represented them (essentially a
pseudonym) without actually informing the application
who they were. Later, the application could query “Is
this person the same as the one I interacted with earlier”
and the security framework would take care of the de-
tails. When the application had trouble finding the user,
it would query the CLASS framework “where is this user
likely to be found” — and it would get a location back.
However, there is no need for a robot to even know the
details of this position — since the software framework is
in high-level concepts, the application just calls “move
to location” and does not know where it is.

3.2 Exposing privileges

Most smartphone app stores provide the user with a sum-
mery of privileges that are allowed/denied of the applica-
tion, and the user has to OK them. While such an idea has
merit, the increased capabilities of the robot (and thus in-
creased consequences of attack) and the increased num-
ber of possible options makes this very difficult. For ex-
ample, let’s say you downloaded an app “pretend to be a
Labrador and fetch a ball”!. In order to recognize a ten-
nis ball, it requires the “use the camera” privilege, and in

'We expect this app to be a hit.

order to fetch it requires the “move the robot” privilege
and the “use robot arm” privileges. Additionally, it grabs
the “use speakers” privilege so that it can simulate bark-
ing. Unfortunately, this app is malicious and it spends its
days watching you, hoping to catch sight of your credit
card and read the numbers on it. You haven’t given it the
“create a connection over the internet” privilege, so you
think you are safe anyways. However, one day when you
are not home the robot simply picks up the phone, calls a
number, and reads it the numbers that it had memorized.

This shows why low-level abstractions like currently
defined on phones or traditional computer systems are
not sufficient to define our security policies. A much
better policy would grant this application “locate ob-
ject (tennis ball), identify/locate user anonymously (via a
pseudonym), move to {tennis ball / user}. Speak only in
the presence of the user.” The challenge here is to expose
the key abstractions that are meaningful from a security
perspective and to map these to something that the plat-
form can enforce.

3.3 Privacy

Another simple application we think would be useful
would be an app for having our robot check if a profes-
sor is in their office and available to meet with a graduate
student. There are many privacy issues hidden in this
seemingly simple app. While it is acceptable for a grad-
uate student to ask if his or her advisor in their office, it
is not acceptable for everyone.

3.3.1 A social network

The list of people who should be able to ask if a professor
is in his or her office is hard to come up with. Students
they advise, students in his or her classes, students in his
or her department (during office hours), other professors,
building administrators, spouses, etc. Even with a well
thought-out list, there are sure to be additional people —
like if a child’s schoolteacher came looking for a profes-
sor, there is probably a good reason for it.

Privacy decisions cannot be made accurately by cre-
ating a central directory of “groups.” Instead, it seems
to lend itself to a network of relationships — essentially,
a social network. This could easily be implemented
through a Facebook plugin. Most of the information
could even be automatically determined without user
input — people you interact with frequently are more
trusted. Relationships such as “sibling” and “friend” and
“friend of friend” are also well defined already on such a
network. It would be reasonable to trust your friends’
opinions as well — if someone that you trust strongly
trusts someone, then you probably can too (given no



other information). Trust, in this case, would not be a bi-
nary value but a measure that can be adjusted over time.

Rather than have a user attempt to quantify their ex-
act opinion of what privacy entails, we believe that it can
be accomplished through feedback and learning mecha-
nisms. The user can view a summary of recent privacy
related decisions, and then provide input if they feel that
they were too strict or too harsh.

3.3.2 Acceptable mistakes

While a method like this will occasionally make mis-
takes, they will generally be small ones — it will not go
and tell your entire personal calendar to a stranger, but it
might give someone slightly too much or too little infor-
mation — perhaps it overestimated the values of a friends’
ratings. We do not think that small mistakes like this will
be a problem — you could expect as much from any sim-
ilar system, human or robot.

However, privacy goes both ways. Perhaps a user
could indicate that they do not wish for the professor to
know that they were looking for him (what student would
really want the professor’s privacy dashboard to pop up
“Student A came by 20 times while you were away”).
The robot should be expected for respect their privacy
as well — though it would be much more likely that the
professor will not tell information to an anonymous user.

3.3.3 Users need control of their privacy

In order to be sure that we respect every user’s privacy,
we came up with a strong guarantee for the framework
that we are designing. Every user will have a mas-
ter “node” that is responsible for making their privacy-
related decisions, and all data containing their private in-
formation will go through that node. You can use public
key cryptography to sign messages and prove that they
are indeed from the correct node and thus represent the
will of the user.

Here is an example. A student, Alice, wants to know
if her professor, Bob, is in his office. She sends her robot
off to go have a look. When the robot arrives in the of-
fice, it looks through the window and recognizes Bob.
However, it cannot immediately tell Alice this as the in-
formation has not been signed off by Bob’s privacy node
(could just be an application running on his desktop, or
his smartphone, or wherever). Instead, the robot must
send a message to Bob’s node asking if it is okay for
Alice to know where Bob is. And since that message
contains information about Alice, it should be signed by
her node (luckily it was obvious that this message would
be needed when the request was given, so the robot has
it handy). Now, at a later time, Bob can review his logs
and see that Alice was attempting to find him — and Alice

can review her logs and know that Bob was told she was
looking for him.

Having a log to keep everyone accountable is very im-
portant for privacy. If a mistake is made, knowing who
was involved gives the affected people a lot of peace of
mind. It also allows you to hold people accountable —
someone had a robot watching you all day long? You
probably want to have a talk with them (and adjust your
privacy thresholds).

4 The software architecture

The key challenge with the software architecture is defin-
ing the security relevant robot abstractions and exposing
the communication between different modules that oper-
ate on these abstractions. Then, the framework should be
decomposed around these abstractions.

As we have shown, high-level abstractions are well
suited for defining the policies and APIs for robot apps.
Recent work on building secure web browsers has also
used high-level abstractions as first-order concepts, so
we can borrow a few lessons on architecture from them.
Like the OP web browser [4, 5], we believe that separat-
ing the main components of the framework and defining
arigid interface between them can make reasoning about
security much simpler. All inter-component communi-
cations go through a common message-passing interface
that is easy to inspect.

The IBOS operating system [14] shows that promot-
ing these high-level abstractions to first-order concepts
allows for security invariants to be verified directly at the
system kernel level. In effect, this massively reduces the
amount of code that you’re trusting when you make se-
curity decisions and allows you to withstand attacks that
compromise the framework level libraries and modules.

Figure 2 shows our proposed architecture. This over-
all architecture resembles a microkernel where there is a
thin layer of software responsible for passing messages
between different modules running above. The layers
above implement hardware-specific features, robot ab-
stractions, and abstractions for applications. The appli-
cations run at the top and use the abstractions exported
by lower layers.

Not only does the real world present a massive state
space in terms of possible robot actions and encounters,
but it provides one that we cannot modify easily. For a
computer system, we regularly define standards - all web
servers must accept requests in this form, all file systems
must support these features, etc. You can not however re-
lease the IEEE spec on coffee shop ordering, or the stan-
dard kitchen cabinet interface. To this end, you’ll need to
have a modular system wherein modules can provide ca-
pabilities to one another. If you make an app that fetches
coffee from the shop, it might depend on the Starbucks



App App
App abstractions
User ident. Tefmls bal
ident.
Robot abstractions
Navigation Vision
H/W specific
Movement Sensors

Security kernel

Figure 2: Proposed software architecture. This figure
shows the layers of our proposed software architecture
with a few example services in each layer.

app to be able to order coffee from Starbucks. Many cof-
fee shops could realize the benefit of a robot knowing
how to order their coffee, and they could each write a
module providing functionality for their shop.

5 Additional related work

In one related project, O’Kane proposes privacy en-
hancements for robots [10]. In this work, O’Kane sug-
gests approaching robot privacy from a hardware per-
spective by crippling sensors intentionally to avoid al-
lowing the robot to learn too much about the objects it is
sensing. However, our position is that robots should have
the highest quality hardware that makes economic sense
for the robot and that privacy should be enforced by the
more flexible software layer.

Tomatis et al. proposed writing robot algorithms in
type safe software to avoid common programming pit-
falls (e.g., buffer overflows). However, the sheer number
of libraries needed to run reasonable robot applications
makes this approach infeasible.

Several projects from the robotics area look at devel-
oping robots that avoid hurting people [18, 9, 6]. Their
key techniques supplement the basic collision avoidance
techniques used by most robots to take into account soft
tissue. When their algorithms detect soft tissue, they pre-
vent damaging it. This type of measure is fundamental to
the robot itself and does not have much to do with robot
apps.

Several recent studies in privacy are related to our

work. Hong et al. defined a model for privacy with ubiq-
uitous systems [7], and Beresford and Stanjano look at
anonymity for applications that track location [2]. Fi-
nally, recent work on decentralized social networks [1]
shows mechanisms we could use to implement some of
the social-network-based privacy mechanisms we pro-
pose.

6 Conclusions

Given the success of “app stores” with smartphones, it
is likely that a similar platform will show up for robot
applications. These generally programmable robots will
enable a new class of applications that use robots in novel
and interesting ways. However, robots are fundamen-
tally different than traditional computer systems, so it
will be challenging to design systems that allow users
to download and install relatively untrustworthy applica-
tions without compromising the user’s or the robot’s se-
curity and privacy. We have some promising initial ideas
for improving security and privacy for robot apps, but
this new area of security research will evolve with time
as people build more robots and more robot apps.

Acknowledgment

This research was funded in part by NSF grant CNS
0953014 and AFOSR MURI grant FA9550-09-01-0539.
Any opinions, findings, conclusions or recommendations
expressed in this paper are solely those of the authors.

References

[1] BACKES, M., MAFFEI, M., AND PECINA, K. A security
API for distributed social networks. In Proceedings of
the 18th Annual Network and Distributed System Security
Symposium (February 2011).

[2] BERESFORD, A. R., AND STAJANO, F. Location privacy
in pervasive computing. [EEE Pervasive Computing 2
(January 2003), 46-55.

[3] DENNING, T., MATUSZEK, C., KOSCHER, K., SMITH,
J. R., AND KOHNO, T. A spotlight on security and
privacy risks with future household robots: attacks and
lessons. In Proceedings of the 11th international con-
ference on Ubiquitous computing (New York, NY, USA,
2009), Ubicomp *09, ACM, pp. 105-114.

[4] GRIER, C., TANG, S., AND KING, S. T. Secure web
browsing with the OP web browser. In Proceedings of
the 2008 IEEE Symposium on Security and Privacy (May
2008), pp. 402-416.

[5] GRIER, C., TANG, S., AND KING, S. T. Designing and
implementing the OP and OP2 web browsers. In ACM
Transactions on the Web (TWEB) (2011).



(6]

[7

—

[8
(91

—

(10]

(1]

[12]
(13]

(14]

[15]

(16]

(17]

(18]

HADDADIN, S., ALBU-SCHANDFFER, A., AND
HIRZINGER, G. Soft-tissue injury in robotics. In
Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on (may 2010), pp. 3426 —3433.

HONG, J. 1., NG, J. D., LEDERER, S., AND LANDAY,
J. A. Privacy risk models for designing privacy-sensitive
ubiquitous computing systems. In Proceedings of the 5th
conference on Designing interactive systems: processes,
practices, methods, and techniques (New York, NY, USA,
2004), DIS *04, ACM, pp. 91-100.

IROBOT, INC. http://www.irobot.com/.

Luca, A. D., ALBU-SCHAFFE, A., HADDADI, S., AND
HIRZINGER, G. Collision detection and safe reaction
with the dlr-iii lightweight manipulator arm. In [EEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS2006)
(2006).

O’KANE, J. M. On the value of ignorance: Balancing
tracking and privacy using a two-bit sensor. In Proc. In-
ternational Workshop on the Algorithmic Foundations of
Robotics (2008).

PARO RoBOTS USA, INC. Paro therapeutic robot.
http://www.parorobots.com/.

ROBOMOW. http://www.robomow.com/.

SINGER, P. Wired for war: robotics revolution and con-
flict in the 215t century. Penguin Press, 2009.

TANG, S., MAI, H., AND KING, S. T. Trust and protec-
tion in the Illinois browser operating system. In Proceed-
ings of the 9th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2010),
OSDI’10, USENIX Association.

THRUN, S., BEETZ, M., BENNEWITZ, M., BURGARD,
W., CREMERS, A., DELLAERT, F., Fox, D., HAHNEL,
D., ROSENBERG, C., Roy, N., SCHULTE, J., AND
SCHULZ, D. Probabilistic algorithms and the interactive
museum tour-guide robot minerva. International Journal
of Robotics Research 19, 11 (2000), 972-999.

THRUN, S., BURGARD, W., AND FoX, D. Probabilis-
tic robotics. Intelligent robotics and autonomous agents.
MIT Press, 2005.

THRUN, S., MONTEMERLO, M., DAHLKAMP, H.,
STAVENS, D., ARON, A., DIEBEL, J., FONG, P., GALE,
J., HALPENNY, M., HOFFMANN, G., LAU, K., OAK-
LEY, C., PALATUCCI, M., PRATT, V., STANG, P., STRO-
HBAND, S., DUPONT, C., JENDROSSEK, L.-E., KOE-
LEN, C., MARKEY, C., RUMMEL, C., VAN NIEKERK,
J., JENSEN, E., ALESSANDRINI, P., BRADSKI, G.,
DAVIES, B., ETTINGER, S., KAEHLER, A., NEFIAN,
A., AND MAHONEY, P. Winning the DARPA grand chal-
lenge. Journal of Field Robotics (2006). accepted for
publication.

ZINN, M., KHATIB, O., ROTH, B., AND SALISBURY,
J. K. Playing it safe - human-friendly robots. In IEEE
Robotics and Automation Mag (2002).



