Retroactive Detection of Malware with
Applications to Mobile Platforms



Market forecast for mobile

More smartphones than PCs in 2-3 years
— Dominant platforms targeted

4G will fuel apps and mobile Internet use
— M-commerce, M-voting, Parental Control, ...

Phones are personal, have rich data
— Social use makes users more vulnerable

Power limitations stymie Anti Virus products
— Power consumption increases with # threats

Likely big threats:
— Bluetooth viruses, (piracy) trojans, social malware



Trends: Faster, stealthier, smarter

kits, recompilers, polymorphism
malware often installs AV (limit competition)

produced by organized crime



Contrast: What the consumer wants




What makes this challenging

1. Malware masquerades and deceives
2. Malware will not allow itself be erased

3. Malware can catch interrupts

4. Malware can edit system calls/responses
5. Malware is bad, will not cooperate



Main principles

* To block detection, malware must be active.
* To be active, malware needs to be in RAM.
* RAM is faster than flash and radio.



\

1

monolith
kernel il i
Ay stesisediine
o 1. S tall
g . Swap out all programs

1 Yt
i

.
Thae
1
LT

(malware may refuse)

/ g

cache

RAM

Contact markus@fatskunk.com for more details incl. improvements.



1

monolith
kernel

1. Swap out all programs
(malware may refuse)
2. Overwrite all “free” RAM

Ve pseudo-random
/ content(malware refuses

cache . again)

RAM /

Contact markus@fatskunk.com for more details incl. improvements.




1

monolith
kernel

1. Swap out all programs
(malware may refuse)
2. Overwrite all “free” RAM

Vel pseudo-random
/ content(malware refuses

cache . again)

RAM /

Contact markus@fatskunk.com for more details incl. improvements.




]

monolith
kernel

1. Swap out all programs
(malware may refuse)
2. Overwrite all “free” RAM

// pseudo-random content

(malware refuses again)

cache 3. Compute keyed digest of all RAM
. (access order unknown a priori)

RAM /

Contact markus@fatskunk.com for more details incl. improvements.




monolith
kernel

RAM

Contact markus@fatskunk.com for more details incl. improvements. 11




monolith
kernel
1. Swap out all programs
(malware may refuse)
2. Overwrite all “free” RAM
Vel __pseudo-random content
/ (malware refuses again)
3. Compute keyed digest of all RAM
cache : -

(access order.unknown a priori)

External verifier provides this

Contact nmarne. —~ovements.

o




monolith
kernel
1. Swap out all programs
(malware may refuse)
2. Overwrite all “free” RAM
| pseudo-random content
(malware refuses again)
3. Compute keyed digest of all RAM__
cache e e e

(access order unknown a priori)

External verifier will time this
(and check result of computation)

o

Contact nmarne. —~ovements.




Adversary wants to replace the
legitimate monolith kernel F with a
function F’ s.t. F'(x)=F(x) for all x,
running in same amount of time,
where F and F’ do not hand

over control to the same processes
at the end of their execution.

CacCiv

/ap out all programs

nalware may refuse)
Jverwrite all “free” RAM
/pseudo-random conte#”
(malware refuses ~
Compute keyer’

(access order

RAM

Active malware agent can:

1.

2.
3.
4

Send to flash (incurs delays)
Recompute contents (ow!)
Get external help (latency)
Do all correctly, then cause
hand-over to wrong process
Agree to die / get detected

1-4 will fail

Contact markus@fatskunk.com for more details ints




Some details

Only requirement: know amount/type hardware
Full use of caching (instruction + data)

Strategy to maximize penalty for flash access
Two adversarial models: external attacker or no
SIM card can be used as low-latency timer

Contact markus@fatskunk.com for more details incl. improvements.




Some stats

Variant implemented - takes <3s on
256MB, 600 MHz Android board

Speedup for multi-core

Detects all active malware — retroactively
Provable security — no heuristics

Suitable for mobile platforms

Can be combined with a “secure rsync”

Contact markus@fatskunk.com for more details incl. improvements.




