Scalable Web Object Inspection
and Malfease Collection

The Problem

* Drive-by download attacks infect thousands of
computers daily

* Millions of URLs spread the attacks

* Current technologies based on full system
virtualization can’t scale

Our Solution

* A URL analysis framework using lightweight
virtualization and a modified WINE engine
— Scans thousands of URLs in parallel

— Minimizes resource consumption (VM uses less
than 300MB of disk, 3MB of memory)

— Extracts the offending payload and use it for
further analysis

Framework Architecture

Testbed Architecture

|
| |
! I
! I
! I
! I
(¢} |
1O |
| © ,
& |
: = Application 000 Application Application :
:g Executing Executing Executing :
. untrusted untrusted untrusted | |
: code code code :
|
| WINE WINE WINE :
|

© Virtualization Layer (Process Namespace Isolation)

g

(7)) Resource Manager

) I/0 Devices (Network + Stackable File System)

5

4

Framework Architecture

* OpenVZ containers with Debian Linux and
WINE

* Execute Internet Explorer inside WINE and
visit malicious URL

* NOP Sled detector inside WINE detects the
attack (heap spray) and extracts the payload

Framework Architecture

* The payload is executed inside WINE with the
payload loader

 Malware contacts a remote server and
downloads zero day malware binaries

Framework Architecture

Virtual Container

Wine

Internet
Explorer

Custom Wine memory allocator

NOP Sled Detector
Scan memory with:

NOP Sled
detected

libemu

x86 e Nozzle

>

Internet

Server hosting
malicious code

4

(2) Contact ! " (3) Download
Attacker . malicious code

Wine

N
EgglLoader.exe Malicious
Code
(1) Execute Installed
Payload

Virtual Container

1000000

100000

10000

1000

MBs

100

ivm 10
M 10 VMs

50* VMs 1
1 100* VMs
H 750* VMs

Scalability

Memory Usage/Estimates

QEMU ViMware
Virtualization Technology

OpenVZ/Wine

Scalability

URL Testing Throughput/Estimates
10,000,000

1,000,000
100,000
=}
X 10,000
5
< 1,000
E
100
Z
10
N\

4 per second 1
M per hour* 10 VMs 100 VMs 750* VMs

K per day* Number of VMs

Limitations

* QOur solution is limited to detecting heap spray
attacks only

* |f the offending payload references functions
or data in the address space of the browser it
can evade detection

Questions ?

Thank you!

