Scalable Web Object Inspection
and Malfease Collection



The Problem

* Drive-by download attacks infect thousands of
computers daily

* Millions of URLs spread the attacks

* Current technologies based on full system
virtualization can’t scale



Our Solution

* A URL analysis framework using lightweight
virtualization and a modified WINE engine
— Scans thousands of URLs in parallel

— Minimizes resource consumption (VM uses less
than 300MB of disk, 3MB of memory)

— Extracts the offending payload and use it for
further analysis



Framework Architecture

Testbed Architecture
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Framework Architecture

* OpenVZ containers with Debian Linux and
WINE

* Execute Internet Explorer inside WINE and
visit malicious URL

* NOP Sled detector inside WINE detects the
attack (heap spray) and extracts the payload



Framework Architecture

* The payload is executed inside WINE with the
payload loader

 Malware contacts a remote server and
downloads zero day malware binaries



Framework Architecture
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Scalability

URL Testing Throughput/Estimates
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Limitations

* QOur solution is limited to detecting heap spray
attacks only

* |f the offending payload references functions
or data in the address space of the browser it
can evade detection



Questions ?

Thank you!



