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Abstract

Internet drive-by downloads attacks are the pre-
ferred vehicle to infect desktop computers. In this pa-
per, we propose a new URL analysis framework that
combines lightweight virtualization and novel mod-
ifications to the WINE engine to detect heap spray
attacks against applications. In addition, we are
able to extract the attack shellcode used to further
download other malicious binaries to the victim ma-
chine. Our preliminary results indicate that our sys-
tem offers a compelling alternative to other process
monitoring and virtualization technologies including
QEMU and VMware since it can scale to thousands
of instances per machine.

1 Introduction

Our increasing reliance on the Internet for many
facets of our daily lives (e.g., commerce, communi-
cation, entertainment, etc.) has inspired several felo-
nious operations (e.g., phishing, spam), and the net-
work has now become an attractive target for a host
of illicit activities. While the monetary gains from
the myriad of furtive behaviors being perpetrated to-
day are not yet fully understood, it is clear that there
is a general shift in tactics of old—wide-scale attacks
aimed at overwhelming computing resources are less
prevalent than they once were, and instead, tradi-
tional scanning attacks are being replaced by other
mechanisms. Chief among these is the exploitation
of the web, and the services built upon it, to distribute
malware.

*This work was partly supported by the National Science
Foundation through grant CNS-TC-0915291. Opinions, find-
ings, conclusions, and recommendations expressed are work of
the authors and do not necessarily reflect the views of the NSF.
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Figure 1: Containers are used to execute multiple URL
inspection instances. The resource manager guarantees
fairness across physical resources.

Unfortunately, current proposed solutions for both
honeypots and binary detection and analysis — in-
cluding past work [14, 12] — depend heavily on full
system virtualization [18, 4, 20, 8, 23] and thus, they
do not scale well. These architectures are resource
intensive, not allowing us to study the malware in-
fection vector and the corresponding shellcode un-
der different operating conditions. To make matters
worse, it is very difficult to analyze the interactions
of the malware with the browser or identify all the
possible browser infection variants: usually, one has
to fully instrument the browser or monitor all oper-
ating system activities and then thoroughly examine
the produced logs. Each of these solutions comes at
a heavy cost in terms of CPU, memory, and storage
rendering them unsuitable for the analysis of thou-
sands or even millions of application instances (e.g.,
per URL inspection).

To transcend the aforementioned limitations, we



build a scalable host architecture that harnesses the
multi-processor and multi-core capabilities of cur-
rent commodity machines. Specifically, we envi-
sion using a lightweight kernel-level process contain-
ment system combined with Wine [1]—a Win-
dows API environment on top of X, OpenGL, and
Unix—to track malware interactions with the OS
(see Figure 1). This contrasts with the use of other
process monitoring and virtualization technologies
(including QEMU and VMwazre) in that it does not
impose excessive overhead, while at the same time,
provides a robust application driven tracking system
that can scale to thousands of instances per machine
as shown by our preliminary experimental evaluation
in Section 4.

2 Related Work

Over the past several years, virtual machines have
routinely been used as honeypots for detecting at-
tacks (e.g., [2, 9, 10, 22]). Although honeypots have
traditionally been used mostly for detecting attacks
against servers, the same principles also apply to
client honeypots. For example, Moshchuk et al. used
client-side techniques to study spyware on the web
[10]. Their primary focus was not on detecting drive-
by downloads, but in finding links to executables la-
beled spyware by an adware scanner. More germane
is the work of Provos et al. [13, 11] and Seifert et
al. [16] which raised awareness of the threat posed
by drive-by downloads. These works were focused
on explaining how different web page components
are used to exploit web browsers, and merely pro-
vide a high-level overview of the different exploita-
tion techniques in use today. The focus in this project
is to a much more scalable and thus comprehensive
analysis of the different aspects of the problem posed
by web-based malware. This includes analysis of its
exploit vectors, malware analysis, and shellcode col-
lection.

Furthermore, there has also been plethora of
work on heap-spray exploit detection and mitiga-
tion [15, 7, 6]. However, all this related work fo-
cus on techniques to detect the operating system
level. Additionally, some work that tries to detect
drive-by-download attacks [S5] uses anomaly detec-
tion with emulation to automatically identify mali-
cious JavaScript code.
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Figure 2: Framework Architecture
3 Framework Architecture

Our primary goal is to identify malicious web sites
that exploit web browsers by using heap spray [17]
techniques. To accomplish this, we have built an ac-
tive honeynet that can instantiate in parallel a large
number of un-patched Microsoft Internet Explorer
(IE) instances. We are using container-based oper-
ating system virtualization [19] and WINE [1] to ex-
ecute each application instance in an isolated envi-
ronment. In our architecture, we use IE as a proof-
of-concept. We do so because IE is currently the
most widely used browser and as a result the pri-
mary target for attackers. In future work, we plan
to use other browsers including Mozilla Firefox and
Opera among others. The overall framework design
has similar design characteristics with previous re-
search [21, 12] on website analysis. However, we
developed improvements that enable us to scale to
a larger number of instances using the same set of
resources. In the following paragraphs, we discuss
the details of the system internals including our novel
heap spray exploit detection framework inside WINE
see Figures 1 and 2.

3.1 Virtual Environment Setup

For malware web object detection, we create in-
stances of Virtual Environments (VEs). Each of
these VEs have a minimal and stripped version of
Debian Linux 5.0 installed. This Debian VE contains
the necessary packages to have a functional WINE



installation. One issue that cropped up was related to
the graphical display interface. Any windows appli-
cation binary that requires a graphical user interface
needs to connect to an X server to display its graph-
ics output. Of course, adding an X server (X.org
or XFree86) installation on each VE instance would
increase the VM memory and storage footprint and
thus the overhead of our system. To address that,
we relied on a feature of the X implementation: the
capability to redirect running applications to display
their output on a remote X server. Therefore, we in-
stalled an X server on a separate VE acting as graph-
ical output aggregation point for all other VEs. This
X feature helped us conserve state reducing the en-
tire image to approximately 300MB of disk storage.
In addition, while a VE instance is idle, the only pro-
gram being executed is init and sysklogd. This re-
duces the idle memory usage to less than 3MB per
container. Once the basic VE is set up and running
we installed an un-patched version of Internet Ex-
plorer and took a snapshot of the VE (a procedure
also known as CheckPointing). After visiting each
URL, we used that snapshot to revert the VE to a
known clean state.

3.2 Retrieving the URLSs

To process a given web object, the system executes
IE using Wine and instructs it to visit the object’s
URL. For each URL we visit, we pause until the
content is fully downloaded. To prevent attackers
from evading our system using a timer, we wait for
the entire process for at least 10 seconds after all
communications have been completed. At the same
time, we monitor every request for memory alloca-
tion through Wine. This way we can terminate early
if we detect the attack vector. Our empirical re-
sults indicate that 10 seconds is an adequate time to
retrieve a URL and prevent timing evasion attacks.
Moreover, we are not attempting to analyze any mal-
ware binaries, only detect attacks to the browser’s
heap. As a future direction, we plan to explore if
longer waiting times (few minutes) have any effect
on the detection accuracy.

Our aim is to scalably identify attacks against the
browsers that use heap spray techniques. Heap spray
attacks allocate thousands of blocks of memory in
order to increase their chance of success when they

divert the browser execution to an address in the
heap. Each allocated memory block is several hun-
dred kilobytes in size. To ferret-out heap spray at-
tacks, we have developed a novel custom memory
allocator that detects heap spraying and extracts the
offending payload (shellcode) from the heap. An in-
depth analysis of our memory allocator will be pro-
vided in Section 3.3. Once the attack is detected,
Internet Explorer is terminated and the suspicious
memory blocks are saved into a file on the host oper-
ating system. The host system then copies that file to
a secure location for further inspection and uses the
snapshot to restore the VE to a clean state. The VE
is now ready to inspect the next available URL.

3.3 Customized Memory Allocator

Detecting heap spray attacks in windows has been
proposed before. However, all previous approaches
were using a full windows stack and relied on in-
strumentation of all heap calls and memory alloca-
tions. To avoid excessive processing time and effec-
tively detect heap spray attacks, we have developed a
custom memory allocator for Wine. When a request
for a large memory block is received, the allocator
places the address of that memory block in a linked
list. The contents of that address are not inspected
at that time because the memory returned by these
functions is uninitialized. We have to wait until the
memory is initialized to scan the contents. When the
next memory request is received, all memory blocks
that are already in the linked list are inspected. Our
NOP sled detection engine searches that block of
memory for NOP sleds. There has been a plethora of
research on NOP sled detection [15], libemu [3]. We
leverage all these techniques to determine whether
that block of memory contains a NOP sled or not.
The memory blocks are scanned every time a new ad-
dress is appended to the linked list. Moreover, when
a block is freed, it is removed from the list and not
scanned again. If a NOP sled is detected, the block
of memory is considered malicious and is stored in a
file. When IE is stopped, the host system transfers all
these files to a secure location for further analysis.

3.4 Payload Execution

The browser visits a malicious website that hosts a
web browser exploit. The exploit usually employs



JavaScript to construct the payload and copy it in
large chunks of memory (heap spray). Once the
vulnerability is exploited, the execution flow control
jumps to the nop sled and as a consequence, the shell-
code gets executed. Upon gaining control of the sys-
tem, the shellcode attempts to retrieve other malfease
in the form of binaries. To avoid detection, shellcode
is usually small, retaining only the necessary func-
tionality to exploit the system using a browser vul-
nerability. To complete the take over of the system,
shellcode usually attempts to reach back and down-
load more binaries that will give complete access to
the machine. The payload execution component em-
ulates the part that follows the execution of the shell-
code.

When a suspicious memory block is detected it
is saved to a temporary location that is accessible
only from the host operating system (the VEs don’t
have access to that location). Usually, this block of
memory contains a NOP sled and a shellcode that
the attacker was planning to execute at the exploited
machine. Since our system successfully blocked the
attack and extracted the malicious payload, we can
now let the attack continue in a controlled and mon-
itored environment. Our goal is to collect zero day
malware binaries by letting the attacker think that he
has gained total control of the machine.

To accomplish our goals, we place the malicious
payload into a clean VE where we have also installed
a 32 bit windows executable, the payload loader. The
loader is responsible for reading the malicious data
and executing it. Basically, we try to simulate the
part of the attack where the exploit gains control of
the program execution flow and tries to run the at-
tacker injected shellcode. Before launching the pay-
load loader, we setup a series of sensors that monitor
all the activity on the VE and record it in files. The
sensors are installed outside the VE, so that the mali-
cious code wont be able to deactivate or bypass them.

Furthermore, we are interested in monitoring all
network packets exchanged by this VE. It is very
common for attackers to deploy a connect-back
shellcode that contacts the command and control
server or the malware distribution site and downloads
instructions to execute or binaries to install. We want
to be able to extract all this information from the
communication channel. Moreover, we monitor the
Wine virtual filesystem for any changes i.e. newly

created files, modified files and folders and also the
virtual windows registry (that Wine has built-in) for
newly created keys.

Once the sensors are in place, we instruct Wine
to execute the payload loader and run the suspicious
memory block for about 2 minutes. Previous work
[12, 21] has shown that 2 minutes is an adequate
amount of time for a malware to take over a sys-
tem. During that time, the shellcode contacts the
malware distribution server and downloads a Trojan
downloader. This last piece of code is responsible
for downloading more binaries and installing them
to the machine. The downloaded binaries are often
key-loggers, back-doors or spam agents that try to
use the machine or steal information. We allow all
the downloaded software to silently execute and take
complete control of the system, while we collect ev-
ery useful bit of information from our logs. After the
two minutes period has elapsed, the VE is shutdown
and reverted to a known clean state. The VE is ready
to be used for another payload execution.

4 Experimental Evaluation

To conduct our experiments we used two servers
with the same hardware specifications. Specifically,
the server models were DELL PowerEdge R710 with
quad core intel x64 3.2Ghz CPU, 72GB of RAM
memory and Seagate Baracuda 3.3TB for disk stor-
age. In terms of software, we installed the 64 bit ver-
sion of CentOS 5.3 on both servers. On top of that
we deployed OpenVZ on one server and VMware
Server 2.02 and QEMU 0.9.0-4 on the other. Note
that neither was run concurrently during the experi-
ments. For the OpenVZ server we installed the 32
bit version of Debian 5.0 on each container. We re-
moved unnecessary software like sendmail, apache
and mysql and created a minimal environment. On
each virtual container we deployed our custom ver-
sion of Wine 1.1.41 and then used winetricks to in-
stall Internet Explorer 6.0 with Service Pack 1. On
the QEMU and VMWare Server, we created virtual
machines with Windows XP 32-bit SP3 and Internet
Explorer 6.0.

4.1 Experimental Results

In our first experiments, we measured the effective-
ness of our heap-spray detection mechanism by ac-
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cessing URLs that were hosting known heap-spray
exploits. Second, we used our system on malicious
pages that are hosted on the Internet and infect thou-
sands of computers daily. Third, we quantified the
performance overhead of our approached in compar-
ison to other similar systems.

4.2 Heap Spray detection

To validate the effectiveness of our heap spray detec-
tor, we employed two different sources to gather a list
of browser exploits that use heap-spray attacks. One
source is milwOrm a popular exploit repository avail-
able on the Internet. Another source was metasploit,
a framework that can produce exploits for a large
number of vulnerabilities. In total, we collected 53
different classes of working exploits based on heap-
spray attacks. All of those 53 exploits where success-
fully detected by our framework and the offending
payload (shellcode) was successfully extracted.

In addition, we exposed our framework to 6,122
URLs provided by Google Inc. that were known
to contain different attacks. These URLSs contain
attacks that target not only browsers but also plug-
ins including Flash, ActiveX and PDF, that go be-
yond heap spray attack. These are not currently sup-
ported by our framework. Due to this limitation, we
were only able to detect 274 URLs that used heap
spray attacks. Using manual inspection, we con-
cluded that the majority of the URLs were targeting
other browser components that we plan to support on
a future release as here we present a proof-of-concept
prototype.

Although currently limited in scope, our frame-
work scales very well when compared to Qemu and
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VMware and we were able to scan more URLs with
fewer containers. Indeed, we can process approxi-
mately 36,000 URLs in a day with only 10 virtual
containers. In addition, we can further increase the
overall throughput when we raised the virtual ma-
chines to 100 VMs. We illustrate this on figure 4.
Note that we used a logarithmic scale. The results in-
dicate that we can process the same number of URLs
in as little as an hour. Also, we can estimate that the
maximum amount of virtual containers that we could
possibly install on a single server is approximately
750. Should this prove to be feasible, we would be
able to scan approximately 6.5 million URLSs a day.

4.3 Scalability and Performance overhead

To get a rough estimate for the capacity of our
servers, in terms of memory and disc space, we
used Unix measuring utilities including time and
top. We conducted these experiments for multi-
ples of 10 VMs across all three virtualization plat-
forms. Then we used this information to extrap-
olate what we estimate is the memory consump-
tion for 50, 100, and 750 VMs. The results are
shown in figure 3, using a logarithmic scale. Mem-
ory usage per VMware virtual machine during our
experiments was between 532MB and 578MB, av-
eraging at 565MB. QEMU behaved similarly with
and average of 549MB per virtual machine. The
OpenVZ/Wine platform used, on average, 91MB
of memory for a single VM. Memory consumption
scaled to 10 VMs well for all platforms. As we can
see in figure 3, the OpenVZ/Wine platform demon-
strated a footprint much smaller then QEMU and
VMware.



We also recorded approximate sizes for each plat-
form’s VMs physical disk footprint, along with
its corresponding snapshot. Although disk space
is of low cost, and as a result is of less im-
portance in capacity planning, the comparison be-
tween each platform helps to illustrate the strengths
of OpenVZ/Wine. QEMU and VMware averaged
around 1.5-1.6GB on disk, which the OpenVZ/Wine
platform consumed only 300MBs. We were also
able to make comparisons between VMware and the
OpenVZ/Wine platform in terms of the time it takes
to stop a running VM (say, at the end of an exper-
iment) and restart with a clean snapshot (ready for
the next URL). VMware demonstrated a 0.91 to 1.01
second (0.96 average) time in reverting to a restored
snapshot. Performing this operation from the CLI
also required that the VM be started, which took be-
tween 1.52 and 1.66 seconds (1.57 average). This
resulted in a total time to replace a running VM
with a clean snapshot of between 2.43 and 2.67 sec-
onds (2.53 average). The OpenVZ/Wine platform re-
quired and average of 0.52 seconds to stop a VM, and
0.21 seconds to restore to a saved snapshot (ready for
the next URL), resulting in a total experiment restart
time of approximately 0.73 seconds. Barring any op-
timization in either platform, OpenVZ outperforms
VMware in terms of experiment throughput.

5 Conclusions

Our results, while preliminary, show a significant
scalability benefit when deploying our framework
over traditional virtualization technologies. More ex-
perimentation will be conducted in the near future to
push the performance limits of our framework, and
adapt it to become more robust and more extensible.
As part of our future work, we plan to explore the
limitations of heap spray memory detection.
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