
MitiBox: Camouflage and Deception for Network Scan Mitigation

Erwan Le Malécot†‡
†Kyushu University

‡Institute of Systems, Information Technologies and Nanotechnologies

Abstract

Reconnaissance, if successful, provides a definite tactical
advantage in a battle and, as such, unsolicited computer
network scans are often the precursors to more signifi-
cant attacks against computer assets. In this paper, we
introduce an original system whose purpose is to miti-
gate the benefits an attacker can expect from scanning
a targeted network. In contrast to more traditional ap-
proaches, we propose to act a priori against scanning
activity by continuously obfuscating the appearance of
the targeted network through the combination of various
simple mechanisms (i.e. random connection dropping
and traffic forging). Moreover, we propose a method
to immediately penalize hosts sending seemingly suspi-
cious traffic to the targeted network while maintaining
decent connectivity to cope with ”false positives”.

1 Introduction

Over the past two decades the Internet and underlying
TCP/IP computer networks have expanded to the point
that nowadays a considerable number of organizations
depend on them to conduct business (e.g. electronic
commerce). In the process, they naturally attracted the
attention of malicious people who started to devise ways
of compromising and exploiting resources connected to
the Internet for profit. One way for attackers to locate
potentially interesting resources is to directly scan the
network, sending probes to a set of destinations in the
IP address space and watching for replies. Actually, sev-
eral dedicated tools exist to automate that task, thus en-
abling attackers to easily and quickly process large por-
tions of networks. Skillful attackers may even write self-
replicating programs (i.e. worms) that autonomously
scan for new vulnerable targets and directly try to com-
promise the ones they find. Eventually, malicious scan-
ning activity now constitutes a significant portion of the
traffic exchanged over the Internet [19].

Surprisingly, despite its apparent importance, little
seems to be done specifically against that activity. This
situation is probably related to the fact that there is no
real consensus on the harmfulness of unsolicited network
scans as they usually do not inflict any damage per se
and are indeed difficult to link to actual attacks. Sys-
tem administrators may then be tempted to simply ig-
nore them... Nevertheless, several researchers consider
unsolicited network scans as a threat and thus proposed
mechanisms to protect networks against them.

Most of the currently available mitigation systems are
based on automated detection algorithms that determine
highly probable scanning sources; further traffic from
those sources being subsequently denied. That approach
is reminiscent of what is done with Network-based In-
trusion Detection Systems (NIDSs) to deal with actual
attack attempts. However, we believe it to be somehow
inappropriate to deal with scanning activity: for instance,
even with state of the art algorithms, accurate early de-
tection of scanning sources is still problematic and there-
fore upon detection it is generally too late to prevent
scanners from collecting the pieces of information they
were looking for.

In this paper, we introduce an original system for net-
work scan mitigation. In contrast to the above-mentioned
prevalent approach, we tried to focus more on the speci-
ficities of scanning traffic, including its purpose. We de-
signed our system to continuously reduce the pertinence
of the pieces of information an attacker can gather by
scanning a targeted portion of network, thus aiming di-
rectly at the raison d’être of unsolicited scans. To achieve
that, we propose to make the network portion we ought
to protect behave uniformly (i.e. to make it respond in a
similar fashion no matter what traffic it receives). That
uniform ”look and feel” is produced by combining vari-
ous traffic manipulation mechanisms. And, for increased
mitigation efficiency, we propose to bias the way incom-
ing traffic is processed based on basic trust/distrust con-
siderations (i.e. ”selective deception”).



The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the principal network scanning tech-
niques along with a selection of previously proposed mit-
igation techniques. In Section 3, we describe the pro-
posed system and discuss its design and expected capa-
bilities. Finally, in Section 4, we conclude on our pro-
posal and expose some leads regarding our future work.

2 Background

2.1 Scope
As suggested earlier, we restrict our discussion to TCP/IP
networks. Furthermore, we focus our attention on scan-
ning activity occurring at the network and transport lay-
ers, the privileged scenario being remote scanners trying
to find out active hosts on a target network. So our sys-
tem is not meant to cope with local scanning activity (e.g.
ARP scanning) and we will neglect scanning activity oc-
curring at upper layers. In practice, we will mainly deal
with the IP, ICMP, TCP and UDP protocols [3].

2.2 TCP/IP Network Scanning
Most of the TCP/IP network scanning techniques avail-
able in the wild are actually well understood and widely
documented. This is probably due to their dual-use: for
malicious purposes by attackers, but also for manage-
ment and security assessment purposes by system ad-
ministrators. Additionally, their basics have not evolved
much over recent years. For instance, the survey written
by De Vivo et al. almost a decade ago [5] is still fully ac-
curate. In this section, we will briefly introduce the main
scanning techniques that we try to mitigate with our pro-
posal. For more detailed information, the reader can no-
tably refer to the documentation of the Nmap tool [11].

When scanning a TCP/IP network, attackers are ba-
sically interested in knowing what hosts are up, the list
of their open TCP/UDP ports (i.e. ports on which pro-
cesses are listening for incoming data), and to a smaller
extent, their Operating System (OS). ”Valid” open ports
are of particular interest as they constitute potential en-
try points for subsequent malicious activity. The most
straightforward way to obtain such pieces of informa-
tion is to actively probe the targeted hosts by sending
them packets compliant with the various TCP/IP proto-
col specifications and analyze the associated replies. For
instance, to test if a host is up, one can try to send it
ICMP echo requests and check whether he receives a re-
ply or not (i.e. ”Ping scanning”). Similarly, to test if a
TCP port is open, one can simply try to establish a regu-
lar connection to it by performing a complete three-way
handshake [13]. That connection attempt either fails or
succeed, thus revealing the status of the port.

A scanner may also try to deviate from the protocol
specifications in order to gain stealth or refine is scan-
ning results. For instance, compared to the previously
described TCP port scanning technique, he could choose
to only send a SYN segment to the targeted port to initi-
ate a connection but never send the following segments
necessary to fully establish it (i.e. half-open connection,
”TCP SYN scanning”). The answer to that initial SYN
segment is indeed enough to guess the status of the port:
a RST segment usually means that the port is closed, a
SYN/ACK segment that the port is open and, no response
that the port is probably protected by a packet filtering
mechanism. Other TCP port scanning techniques gener-
ally involve the use of packets specially crafted to exploit
very subtle parts of the TCP protocol specification (e.g.
”FIN”, ”Xmas Tree” and ”Null” techniques [5]). Regard-
ing UDP ports, active probing with UDP segments can be
used to try to determine their status but compared to TCP,
it is much more difficult for a scanner to get a ”precise
answer” (cf. open UDP ports rarely reply).

Finally, the OS of a host can be inferred by matching
the characteristics of the packets it sends to ”signatures”
derived from known OSs. Recent works on active finger-
printing show that it is possible to get an accurate esti-
mation of the sought OS with a very few probes [7]. For
instance, the SinFP tool [1] relies only on three or less
probes sent to an open TCP port, the probes all being
”standard” TCP segments.

2.3 Detecting Scanners?

Most Network-based Intrusion Detection Systems
(NIDSs) embed algorithms to detect scans [17]. Prim-
itive algorithms were based on per-source counters: they
basically triggered an alert if a source was trying to reach
more than a predefined number of different ports or of
different hosts during a specified time frame (e.g. Snort
[15]). Jung et al. later proposed an improved detection
algorithm [9] that greatly reduces the number of differ-
ent hosts that a source can probe before being success-
fully flagged as a scanner (around 4 or 5 in practice).
Yet, even with such detection mechanisms, willing at-
tackers are still able to gather a fair amount of informa-
tion about networks they decide to target. In particular,
Kang et al. showed that an attacker controlling a reason-
able number of colluding scanning sources could defeat
Jung et al.’s proposal [10] and, with the present botnet
phenomenon [12], such attackers are actually very likely
to surface (if they have not already). Another issue is
that in most cases, scanners can avoid detection by suf-
ficiently spacing out their probes. Eventually, the use of
information visualization techniques (e.g. InetVis [18])
provides a way to detect such slow scans but real-time
response is then impaired.

2



2.4 Defense Mechanisms

System administrators usually respond to network scans
by denying further traffic from identified scanning
sources. To do so, they principally rely on firewalls.
Initial firewalls were limited to simple packet matching
criteria (e.g. their protocol, their source/destination IP
addresses, etc.), packets being then either accepted or re-
jected according to predefined static rules. Nowadays,
most firewalls are also stateful, they can keep track of
connections passing through them and thus recognize
whether a packet belongs to an already established con-
nection or not. Rules are no longer solely static but can as
well be created dynamically according to previous states
or external information (i.e. reactive firewalls).

Those extended capabilities enable system administra-
tors to develop elaborate dynamic filtering schemes to
protect their networks. A common example is the au-
tomated blacklisting of source addresses based on the
output of NIDSs. Still, that scheme is vulnerable to IP
spoofing attacks: by forging intentionally suspicious net-
work packets with fake source IP addresses, attackers can
trigger the insertion of these addresses in such automated
blacklists. They can then selectively prevent genuine
users from accessing the targeted network or overload
the blacklists with wasteful entries (i.e. Denial of Ser-
vice (DoS) attacks). IP spoofing can also be exploited to
evade defense mechanisms: attackers can try to conceal
their probes by simultaneously sending similar spoofed
packets. Moreover, by cleverly making use of spoofed
packets it is even possible to bounce a scan off a random
idle host (i.e. ”Idle scanning” [11]). This technique en-
ables attackers to avoid identification as the scan appears
to be coming from the selected idle host but has a few
drawbacks (e.g. it generally consumes much more time
than ”direct” scanning techniques). IP spoofing can be
prevented by ingress filtering mechanisms [6] however
these mechanisms are yet to be widely deployed.

IP spoofing if a fine example of deception for attacking
purposes, but deception can also be used for defense [4].
The most widely used deceptive tools for defense are
probably honeypots [14]. The term ”honeypot” actu-
ally designates a broad range of tools that basically act
as traps for attackers. A honeypot is usually an other-
wise unused resource (i.e. no production value) that is
set in a network and ”waits” for activity. As it is ”un-
used”, most of the activity that it receives is actually ma-
licious (or at least abnormal). Consequently, honeypots
are mainly used for detection and information gathering.
For instance, some honeypots can mimic services com-
monly targeted by attackers and therefore deceive them
into performing complex attacks while being monitored.

Another noteworthy defense mechanism when deal-
ing with network scans is packet scrubbing (also referred

to as packet normalization). It consists in eliminating
”ambiguities” that exist in TCP/IP traffic: some parts
of the TCP/IP protocol specifications can be interpreted
differently and differences exist in the way these spec-
ifications have been implemented. For instance, packet
scrubbers reassemble fragmented packets and drop TCP
segments that have invalid or inappropriate flag combi-
nations. Therefore, packet scrubbers can hinder OS fin-
gerprinting attempts (as they make the traffic generated
by different TCP/IP stacks indistinguishable [16]), and
thwart TCP port scanning techniques that rely on un-
usual packets. Smart et al. [16] proposed an initial packet
scrubber implementation and some normalization func-
tionalities were also later added to PF [8].

3 MitiBox

3.1 Incentives and General Description
End-to-end connectivity is one of the core principles the
Internet was built upon. It basically stipulates that com-
munication protocols should be designed as to store any
necessary state information at the endpoints and not in
between (i.e. not in the network). A direct consequence
of that principle is that any host connected to the Inter-
net can virtually send traffic to any other connected host.
That condition makes scanning activity very difficult to
suppress as it is somehow intrinsically linked to the way
the Internet is operating: any connected host is a poten-
tial scanner. One solution would be to abandon the end-
to-end connectivity principle, as suggested for instance
by Ballani et al. with their ”default-off” paradigm [2].
However, such approach would require the Internet in-
frastructure to be heavily modified and therefore we be-
lieve it to be quite impracticable for the time being.

If we assume that we cannot eliminate scanners and
prevent them from sending probes to the internal network
(i.e. the portion of network that we ought to protect),
the most obvious strategy would be to try to detect those
probes and discard them before they reach their intended
targets. However, as previously discussed (cf. Section
2.3), the effectiveness of that approach is limited as the
first probes sent by a source are usually allowed to slip
through (i.e. until that source is positively identified as a
scanner). And alas, the associated responses are already
leaking out precious information...

We believe that that issue could be overcome by adopt-
ing a slightly more aggressive approach: all incoming
traffic to the internal network is to be initially considered
as probing traffic and treated as such until proved oth-
erwise. Based on that presumption, we propose to put
in place mechanisms at the border of the internal net-
work that continuously obfuscate its appearance. Then,
how should the internal network ”behave” to continu-

3



ously deceive potential scanners while still enabling gen-
uine hosts to access the services it provides? We propose
to implement the following configuration: all malformed
incoming traffic is to be dropped; the remaining traffic is
to either be dropped or to be replied to with equal proba-
bility (1/2), replies being forged when needed. By doing
so, our goal is to make the internal network in its entirety
behave uniformly so that all probing traffic is replied in a
similar fashion. Indeed, perfect uniformity might be hard
to attain but we believe that even approximate uniformity
can effectively disrupt scanners.

In addition, we propose to evaluate sources sending
traffic to the internal network based on their initial ac-
tivity. More precisely, we propose to assign a trust level
to each source based on the destination it first tries to
reach. If that destination is deemed legitimate, the source
is flagged as trusted, otherwise it is flagged as distrusted.
The trust level assigned to a source is then used as a fac-
tor that influences the processing of subsequent incoming
traffic from that source: traffic from a source flagged as
distrusted is to be prevented from reaching the internal
network (i.e. diverted or dropped). Indeed, such scheme
presupposes a way to evaluate destinations. In practice,
the number of services that should be made available to
the outside of a network is usually quite low and the de-
tails of these services known to system administrators. In
that case, it is possible to precompile an exhaustive static
list of all the legitimate destinations on the network (i.e.
list of IP addresses and TCP/UDP ports). Yet, for net-
works with rather lax access policies, precompiling such
static list can become quite difficult. One could then rely
on a dynamic list filled based on the actual response in-
ternal hosts previously gave to incoming traffic (e.g. by
monitoring outgoing traffic), or based on administrative
scans of the network. Naturally, such dynamic list would
have to be periodically refreshed to reflect the composi-
tion of the network. In the remaining of the paper we
assume that we can construct/obtain a list of destinations
on the internal network that are likely to be legitimate.

Ideally, genuine external hosts should not be penalized
by the proposed scheme as they usually know a priori the
location of the services that they want to use and thus
are not likely to be flagged as distrusted. Nevertheless it
may happen, for instance due to misconfiguration issues
or spoofing attacks. To deal with such cases, we propose
to make the trust level associated with observed sources
gradually return to a neutral level (i.e. untrusted).

3.2 Structure
The proposed system is based on several modules, each
providing a specific set of functionality:

• the ”Scrubber” module: it drops abnormal traffic
(i.e. not compliant with the TCP/IP protocol speci-

fications) and smooths the remaining traffic, elimi-
nating ambiguities that could disrupt other modules.

• the ”Tracker” module: it tracks protocol states,
making it possible to determine whether a packet
belongs to a previously established communication
session between two hosts and thus to apply the
same treatment to all packets that make up that com-
munication session. By communication session, we
indeed refer to TCP connections but also to so-
called UDP connections (hence we will abusively
employ the term ”connection” for ”communication
session”). For protocols without explicit connection
starting/ending packets (e.g. UDP), the ”Tracker”
module keeps track of how long it has been since
it witnessed a packet matching the associated state
and if that duration exceeds a timeout the state is
cleared (i.e. behavior similar to most stateful fire-
walls). The ”Tracker” module also records what
processing is to be applied to the packets of each
connection it tracks (i.e. as determined by the other
modules) and carries that processing out.

• the ”Probability” module: it randomly drops a frac-
tion of the connection attempts it receives.

• the ”Trust” module: it records and manages the trust
level associated with each external source. Then,
according to that information, it determines whether
the connection attempts under scrutiny should be
diverted to the ”Reply” module or passed on to
the ”Ruleset” module for further inspection. Exter-
nal sources are originally considered as untrusted.
However, once one of them tries to reach an in-
ternal host, that source is assigned an initial trust
level by the ”Ruleset” module: either ”trusted” or
”distrusted”. The ”trusted” status is to last only
for the connection whose establishment triggered
it. All packets associated with that connection are
then to be delivered to their intended destination
(cf. ”Tracker” module). The ”distrusted” status is
to last for a duration T1. All connection attempts
from a ”distrusted” source are to be diverted to the
”Reply” module. After T1, an initially ”distrusted”
source is then to be considered as ”partially dis-
trusted” and assigned a probability P that progres-
sively decreases over time. The connection attempts
from a ”partially distrusted” source are to be di-
verted to the ”Reply” module with the probability
P or passed on to the ”Ruleset” module with the
probability (1 − P ). Figure 1 explicits the transi-
tions between the various trust levels for the case of
three discrete ”partially distrusted” levels.

• the ”Ruleset” module: it specifies which destina-
tions on the internal network are to be considered as

4



legitimate. Based on that, it determines whether the
sources of the connection attempts under scrutiny
should be subsequently distrusted or not, and pro-
cesses the associated traffic accordingly.

• the ”Reply” module: it replies in a credible and in-
distinguishable fashion to the traffic that has been
redirected to it. Its behavior is actually very similar
to low interaction client honeypots [14]. However,
if honeypots are often used to gather information on
attackers (cf. Section 2.4), the ”Reply” module is
more about hiding information from them [20].

3.3 Traffic Processing
The modules previously introduced are to process all
traffic exchanged between the internal network and the
outside. The outgoing traffic (i.e. connections initi-
ated from the internal network) is only to go through the
”Scrubber” module and the ”Tracker” module as we as-
sume the internal network to be trusted. As for the in-
coming traffic, its processing can roughly be divided into
four main steps, as follows (cf. Figure 3):

1. Similarly to the outgoing traffic, the incoming traf-
fic is first to be processed by the ”Scrubber” module
and the ”Tracker” module: invalid traffic is dropped
and packets corresponding to registered connection
attempts are applied the processing that was previ-
ously selected for them (cf. the next three steps).

2. After the first step, remaining packets to be pro-
cessed should all be connection opening packets.
These connection attempts are to be indiscrimi-
nately dropped with a probability of 1/2. An in-
dependent decision (i.e. to drop or not to drop) is to
be made for each new connection attempt and hence
all packets related to the corresponding connection
are to later undergo the same treatment (cf. decision
stored in the ”Tracker” module).

3. The sources of the remaining connection attempts
(i.e. not dropped in the previous step) are then to be
checked against a list of currently distrusted source
addresses. In case of a positive match, the cor-
responding connection is considered for diversion.
The decision to divert a connection or not is made
based on the current level of distrust of its initiator.

4. Finally, the destinations of the remaining connec-
tion attempts (i.e. not diverted in the previous step)
are to be checked against a ruleset that specifies le-
gitimate destinations on the internal network. If a
connection attempt is targeting a legitimate destina-
tion, it is to be let through (i.e. source temporary af-
fected the ”trusted” status). Otherwise, if a connec-
tion attempt is targeting an illegitimate destination,

it is to be diverted and its source is to be added to
the list of currently distrusted addresses (i.e. source
affected the ”distrusted” status).

Figure 2 summarizes how packets are handled. As
packets related to dropped connection attempts are to be
dropped no matter the trust level of their source address,
their case is omitted on the figure for clarity.

Trusted

Untrusted

Distrusted
(P1 = 1)

Partially
Distrusted
(P2 = 3/4)

Partially
Distrusted
(P3 = 1/2)

Partially
Distrusted
(P4 = 1/4)

T1 T2 T3

T4

Figure 1: Relations between the various trust levels (for
three discrete ”partially distrusted” levels)

Pkt. State

Src. IP

Connection 
Attempt

Related Invalid

Untrusted
Depend on
Ruleset 

Drop

Distrusted
Block
(Divert)

Block
(Divert)

Drop

Partially Distrusted
Partially Block

(Divert or Accept)
Partially Block

(Divert or Accept)
Drop

Trusted Accept Drop

Figure 2: Processing of incoming packets based on their
state and the trust level of their source IP address.

Scrubber Tracker Trust RulesetProbability

Reply Reply

Figure 3: Chain of modules associated with the process-
ing of incoming traffic.

3.4 Discussion
We expect the proposed system to mitigate most of, if
not all, the network scanning techniques introduced in
Section 2.2. Techniques based on non-standard pack-
ets and TCP/IP stack fingerprinting are hindered by the

5



combination of the ”Scrubber” module and the ”Tracker”
module. Connection attempts (and ICMP echo requests)
are consistently either dropped or replied to, by either
authentic internal hosts or the ”Reply” module. There-
fore, finding interesting hosts is made harder for poten-
tial attackers. Obviously, it depends on the abilities of,
the ”Scrubber” module to smooth traffic and of, the ”Re-
ply” module to mimic authentic hosts. However, con-
sidering the tools currently available for that effect, we
believe that a satisfactory level of deception is achiev-
able. Moreover, with our system, the probability for an
attacker to actually reach an authentic host by means of
”direct” scans is fairly low. If he blindly tries to connect
to random destinations of the internal network, he will
most probably be flagged as ”distrusted” and his sub-
sequent attempts diverted to the ”Reply” module. And
even if he initially guesses ”correctly”, his attempts may
be dropped by the ”Probability” module. By bouncing
his scans off several idle hosts (cf. Section 2.4), an at-
tacker could avoid being flagged as ”distrusted” and in-
crease his chances to hit authentic hosts. However, such
approach would consume much more of his time and he
would still have to face the other deception mechanisms
(i.e. the ”Probability” module and, the need to differen-
tiate between authentic hosts and the ”Reply” module).

4 Conclusion and Future Work

In this paper, we proposed a system for network scan
mitigation based on the combination of various simple
mechanisms. The originality of our system resides in the
fact that with it, mitigation is continuous as opposed to
more traditional approaches where it is only triggered in-
termittently (i.e. by automated detection algorithms). By
doing so, our system is expected to offer a more compre-
hensive protection against scanners. Additionally, by de-
sign, most of the currently available scanning techniques
should see their effectiveness severely reduced (e.g. con-
sumption of far more resources to acquire accurate infor-
mation or failure to do so). As for future work, we plan
to complete our implementation of the proposed system
and to deploy it in a real environment in order to evaluate
its practical efficiency and performance.

5 Acknowledgments

The author would like to thank Yoshiaki Hori, Pas-
cal Jinkoji, Heejo Lee, Frédéric Majorczyk and An-
toine Brodin for their valuable comments. Partial sup-
port for this work was provided by the National In-
stitute of Information and Communications Technol-
ogy (NICT), Japan (”Research and Development for
Widespread High-Speed Incident Analysis” project).

References
[1] AUFFRET, P. SinFP. http://www.gomor.org/bin/

view/Sinfp/.
[2] BALLANI, H., CHAWATHE, Y., RATNASAMY, S., ROSCOE, T.,

AND SHENKER, S. Off by Default! In Proceedings of the 4th
workshop on Hot Topics in Networks (HotNets-IV) (New York,
NY, USA, November 2005), ACM SIGCOMM.

[3] BRADEN, R. RFC 1122: Requirements for Internet Hosts –
Communication Layers, 1989.

[4] COHEN, F. A Note on the Role of Deception in Information
Protection. Computers & Security 17, 6 (1998), 483–506.

[5] DE VIVO, M., CARRASCO, E., ISERN, G., AND DE VIVO,
G. O. A Review of Port Scanning Techniques. SIGCOMM Com-
puter Communication Review 29, 2 (1999), 41–48.

[6] FERGUSON, P., AND SENIE, D. RFC 2827: Network Ingress
Filtering: Defeating Denial of Service Attacks which employ IP
Source Address Spoofing, 2000.

[7] GREENWALD, L. G., AND THOMAS, T. J. Toward Unde-
tected Operating System Fingerprinting. In Proceedings of the
1st USENIX workshop on Offensive Technologies (WOOT’07)
(Berkeley, CA, USA, 2007), USENIX Association, pp. 1–10.

[8] HARTMEIER, D. PF. http://www.openbsd.org/faq/
pf/.

[9] JUNG, J., PAXSON, V., BERGER, A. W., AND BALAKRISH-
NAN, H. Fast Portscan Detection using Sequential Hypothesis
Testing. In Proceedings of the 2004 IEEE Symposium on Secu-
rity and Privacy (Washington, DC, USA, 2004), IEEE Computer
Society, pp. 211–225.

[10] KANG, M. G., CABALLERO, J., AND SONG, D. Distributed eva-
sive scan techniques and countermeasures. In Proceedings of the
4th international conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (DIMVA’07) (Berlin, Heidel-
berg, 2007), Springer-Verlag, pp. 157–174.

[11] LYON, G. F. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning. In-
secure, USA, 2009.

[12] MCCARTY, B. Botnets: Big and Bigger. IEEE Security and
Privacy 1, 4 (2003), 87–90.

[13] POSTEL, J. RFC 793: Transmission Control Protocol, 1981.
[14] PROVOS, N. A Virtual Honeypot Framework. In Proceedings of

the 13th conference on USENIX Security Symposium (SSYM’04)
(Berkeley, CA, USA, 2004), USENIX Association, pp. 1–1.

[15] ROESCH, M. Snort. http://www.snort.org/.
[16] SMART, M., MALAN, G. R., AND JAHANIAN, F. Defeating

TCP/IP Stack Fingerprinting. In Proceedings of the 9th confer-
ence on USENIX Security Symposium (SSYM’00) (Berkeley, CA,
USA, 2000), USENIX Association, pp. 17–17.

[17] STANIFORD, S., HOAGLAND, J. A., AND MCALERNEY, J. M.
Practical Automated Detection of Stealthy Portscans. Journal of
Computer Security 10, 1-2 (2002), 105–136.

[18] VAN RIEL, J.-P., AND IRWIN, B. InetVis, a Visual Tool for
Network Telescope Traffic Analysis. In Proceedings of the 4th
International Conference on Computer Graphics, Virtual Reality,
Visualisation and Interaction in Africa (Afrigaph’06) (New York,
NY, USA, 2006), ACM, pp. 85–89.

[19] YEGNESWARAN, V., BARFORD, P., AND ULLRICH, J. Inter-
net Intrusions: Global Characteristics and Prevalence. In Pro-
ceedings of the 2003 ACM International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS’03)
(New York, NY, USA, 2003), ACM, pp. 138–147.

[20] YUILL, J., DENNING, D., AND FEER, F. Using Deception
to Hide Things from Hackers: Processes, Principles, and Tech-
niques. Journal of Information Warfare 5, 3 (2006), 26–40.

6


