
Transaction Generators: Root Kits for Web∗

Collin Jackson
Stanford University

Dan Boneh
Stanford University

John Mitchell
Stanford University

Abstract
Current phishing attacks focus primarily on stealing user
credentials such as passwords. In response, web sites are
deploying stronger authentication and back-end analytics
systems that make it harder for phishers to extract value
from stolen passwords. As defenses against traditional
phishing improve, we expect to see huge growth in the
use of a different type of malware called aTransaction
Generator (TG). Instead of relying on stolen credentials,
a TG simply waits for the user to log in to his account
and then issues transactions on behalf of the user. Since
strong authentication is ineffective against TGs, miti-
gation must focus on transaction integrity. We discuss
rootkit-like methods that allow TGs to hide their tracks,
and explore a number of mitigation techniques, includ-
ing transaction confirmation. These results suggest that
recent identity systems such as CardSpace and OpenID
must also address transaction integrity.

1 Introduction

Current phishing attacks steal user credentials, either by
directing users to a spoofed web page that fools them into
revealing a password, or by installing key-logging mal-
ware that records user passwords and sends them to the
phisher. In response, web sites are deploying a variety
of back-end analytic tools [4, 10, 12] that use past user
behavior to determine transaction risk, such as the time
of day when the user is typically active and the user’s IP
address and location. Some sites are moving to stronger
authentication using one-time password tokens such as
RSA SecurID [14]. These methods, as well as many
other anti-phishing proposals [13, 6, 9, 7, 15, 5], focus
primarily on reducing the value that phishers derive from
stolen passwords.

Fortunately for thieves, and unfortunately for the rest
of us, a new form of attack using aTransaction Genera-
tor (TG) allows criminals to manipulate user accounts di-
rectly without stealing user credentials or subverting au-

∗Supported by NSF through the PORTIA and TRUST projects.

thentication mechanisms. TG attacks generate fraudulent
transactions from the user’s computer, through malicious
browser extensions, after the user has authenticated to the
site. A TG quietly sits on the user’s machine and waits
for the user to log in to a banking or retail site. Once
the authentication completes, web sites typically issue a
session cookie used to authenticate subsequent messages
from the browser. These session cookies reside in the
application environment and are fully accessible to mal-
ware. A TG can thus wait for the user to securely login
to the site and then use the session cookie to issue trans-
actions on behalf of the user, transferring funds out of the
user’s account or purchasing goods and mailing them off
as “gifts”. To the web site, a transaction issued by a TG
looks identical to a legitimate transaction issued by the
user — it originates from the user’s normal IP address
at the usual time of day — making it hard for analytic
tools to detect. Since TGs typically live inside the user’s
browser as a browser extension, SSL provides no defense
against a TG. Moreover, a clever TG can hide its transac-
tions using stealth techniques discussed in the next sec-
tion. To date we found only few reports of TGs in the
wild [1], but we anticipate seeing many more reports as
adoption of stronger authentication becomes widespread.

In Section 3 we explore a number of mitigation tech-
niques, including transaction confirmation. A transac-
tion confirmation system consists of isolated client-side
software and a trusted path to the user that enables web
sites to request confirmation for transactions that the site
deems risky. We discuss the design of a web-based
confirmation system and emphasize that a confirmation
component is necessary in identification systems such as
CardSpace and OpenID.

At a first glance, a Tranasaction Generator may appear
to be related to Cross Site Request Forgeries [3] (CSRF).
A CSRF attack is due to an incorrect implementation of
user authentication at the web site. To prevent CSRF at-
tacks the web site need only implement a small change to
its user authentication system. The modification is trans-
parent to the user. In contrast, transaction generators run-
ning inside client browsers are much harder to block. All

1

the proposed defenses in Section 3 require changes to the
user experience at the site.

2 Building a Transaction Generator

TGs can lead to many types of illegal activity such as,

• Pump-and-dump stock schemes [11]: the TG buys
pre-specified stock on a pre-specified date to artifi-
cially increase the value of penny stock.

• Purchasing goods: the TG can purchase goods and
have them shipped to a forwarding address acquired
earlier by the phisher.

• Election system fraud: for voting-at-home systems,
such as those used for collecting share holder votes,
a TG can be used to alter votes in one way or an-
other.

• Financial theft: a TG can use bill-pay to transfer
funds out of a victim account.

An example. Building a TG is trivial, as shown in the
hypothetical example in Figure 1. This Firefox exten-
sion waits for the user to land on thewww.retailer.
com/loggedin page, which is reached once the user
has properly logged in at the retailer. The TG then issues
a purchase request towww.retailer.com/buy an
orders ten blenders to be sent to some address in Kansas.
Presumably the phisher hired the person in Kansas to
ship the blenders to an offshore address. The person in
Kansas (a.k.a mule) may have no idea that he is involved
in illegal activity.

2.1 Stealthy Transaction Generators

Transactions generated by a TG will show up on any
transaction report page (e.g. an items purchased page) at
the web site. A clever TG in the user’s browser can inter-
cept report pages and erase their own transactions from
the report. As a result, the user cannot tell that fraud oc-
curred just by looking at pages at the site. For example,
the single JavaScript line in Figure 2 removes all table
rows on a transaction history page that refer to a blender.
We have tested this code on several major retailer web
sites.

Moreover, suppose the user pays credit card bills on-
line. The TG can wait for the user to log in to her
credit card provider site and then erase the fraudulent
transactions from the provider’s report page, using the
same one line of JavaScript shown above. The sum total
amount remains unchanged, but the fraudulent transac-
tion is not in the list of transactions. Since most con-
sumers do not bother to check the arithmetic on report
pages from their bank, the consumer will pay her credit
card bill in full and remain unaware that the bill includes
a stealthy fraudulent transaction. This behavior is anal-
ogous to how root-kits hide themselves by hiding their
footprints on the infected system.

The net result of stealth techniques is that the con-
sumer will never know that her machine issued a non-
confirmed transaction and will never know that she paid
for the transaction.

3 Countermeasures

We discuss three potential mitigation techniques against
the stealthy TGs discussed in the previous section. The
first two are easy to deploy, but can be defeated. The
third approach is the one we advocate.

1. CAPTCHA. A CAPTCHA on the retailer’s check-
out page will make it harder for a TG to issue trans-
actions automatically. Retailers, however, balk at this
idea since the CAPTCHA complicates the checkout pro-
cedure and can reduce conversion rates. There are also
security concerns since phishers can hire real people to
solve CAPTCHAs. After all, if one can buy a 50 dollar
blender for free, it is worth paying 10 cents for someone
to manually solve the challenge CAPTCHA. Alterna-
tively, the malware may try to fool the authenticated user
into solving the CAPTCHA for a malicious transaction,
while the user thinks they are solving the CAPTCHA for
some other purpose. Overall, we believe CAPTCHAs
cannot defeat a clever TG.

2. Randomized transaction pages. We mentioned
earlier that a stealthy TG can remove its transactions
from an online credit card bill, thus hiding its tracks.
Credit card providers can make this a little more diffi-
cult by presenting the bill as an image or by randomizing
the structure of the bill. As a result, it is more difficult
for a TG to make surgical changes to the bill.

3. Transaction confirmation — a robust defense. An
online merchant can protect itself from TGs by using
a confirmation system enabling users to confirm every
transaction. The confirmation system should be unobtru-
sive and easy to use.

Here we propose a simple web-based confirmation
system that can be deployed with minimal changes to the
web site. The system combines confirmation with the
checkout process. On the client-side the system consists
of two components:

• A confirmation agent that is isolated from malware
infecting the browser. For example, the browser
might run in a Virtual Machine (VM) while the
agent runs outside the VM. Alternatively, the con-
firmation agent might live on separate hardware de-
vice such as a USB token or a Bluetooth cell phone.

• A browser extension, called SpyBlock, that func-
tions as an untrusted relay between the confirmation
agent and the remote web site.

2

<?xml version="1.0"?>
<overlay xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
<script>
document.getElementById("appcontent").addEventListener("load", function() {
var currentLocation = getBrowser().selectedBrowser.contentDocument.location;
if(currentLocation.href.indexOf("www.retailer.com/loggedin") > 0)
{

var xhr = new XMLHttpRequest();
xhr.open("POST", "https://www.retailer.com/buy");
xhr.send("item=blender&quantity=10&address=Kansas");

}
}, true);
</script> </overlay>

Figure 1: A Firefox transaction generator: purchases blender once logged-in page is visited

document.body.innerHTML =
document.body.innerHTML.replace(/<tr>.*?blender.*?<\/tr>/gi,"");

Figure 2: JavaScript to remove blender line from transaction history page

if (window.spyblock) {
spyblock.confirm(document.form1.transaction, {
observe: function(subject, topic, data) {

document.form1.transactionMAC.value = data;
} }; }

Figure 3: Confirmation JavaScript on checkout page

3

We briefly describe the confirmation process. The con-
firmation agent and remote web site share an ephemeral
secret key generated by an identity system such as
CardSpace during user login. During checkout the re-
mote web site can request transaction confirmation by
embedding the simple JavaScript shown in Figure 3 on
the checkout page. This script interacts with the un-
trusted SpyBlock browser extension that relays the trans-
action details to the confirmation agent. The confirma-
tion agent displays the details to the user and asks the
user to confirm the transaction. If the user confirms, the
agent sends back a MAC of the transaction details to the
browser extension which then forwards the MAC to the
remote web site. The web site verifies that the MAC is
valid, and if so, fulfills the transaction.

Security relies on two properties. First, the agent’s
secret key must be isolated from malware. Second, the
confirmation dialog must not be obscured by a malware
popup to ensure that the user confirms the correct trans-
action details. Similarly, malware must be prevented
from injecting mouse clicks into the agent’s dialog. We
discuss our prototype implementation in the next section.
Note that simply spoofing the confirmation dialog is of
no use to the TG since it cannot generate the necessary
MAC itself.

A non solution. Clearly, a potential solution to the
TG problem is to prevent malware from getting into the
browser in the first place. However, the widespread pen-
etration of end-user machines by spyware and bot net-
works [8] underscores the vulnerability of many of to-
day’s machines to malware attacks. We do not expect
this to change any time soon.

4 Implementation

Our prototype confirmation system is built on top of
the CardSpace identity system in Microsoft’s Vista. We
could have used other anti-phishing proposals, based
on passwords [13, 6, 7, 15] or security tokens [14, 9].
CardSpace, however, includes a convenient authentica-
tion UI. Although CardSpace has a “private” desktop de-
signed for ordinary malware resistance, this desktop may
be vulnerable to privileged malware or operating system
flaws. We further isolate CardSpace from malware us-
ing VMware. CardSpace runs on the host OS while the
browser runs in a guest.

The prototype is implemented as a browser extension
for Mozilla Firefox. The confirmation agent is imple-
mented as a helper application for CardSpace and runs
on the host OS. The agent and the Firefox extension in
the guest communicate via network sockets. The agent
interacts with the user and with CardSpace to generate
the transaction confirmation MACs.

5 Conclusion

Transaction generators are a source of concern for enter-
prises engaged in online commerce [2]. As stronger au-
thentication systems are deployed, we expect transaction
generators to pose an increasing threat. This emerging
form of malware hijacks legitimate sessions and gener-
ates fraudulent transactions using legitimate credentials,
instead of stealing authentication credentials. By operat-
ing within the browser, transaction generators can poten-
tially hide their effects by altering the user’s view of in-
formation provided by any site. Consequently, it is nec-
essary to extend identity systems to include a Transac-
tion Confirmation component. As an example defense,
we designed SpyBlock, a browser extension and confir-
mation agent that provide a simple mechanism for web
sites to request confirmation. Our prototype is available
atwww.getspyblock.com.

References

[1] New trojans plunder bank accounts, 2006. http:
//news.com.com/New+Trojans+plunder+bank+
accounts/2100-7349 3-6041173.html.

[2] COUNCIL, D.-S. I. T. T., AND THE ANTI-PHISHING WORK-
ING GROUP. The crimeware landscape: Malware, phishing, iden-
tity theft and beyond.http://www.antiphishing.org/
reports/APWG CrimewareReport.pdf.

[3] Cross site request forgery (CSRF).http://en.wikipedia.
org/wiki/Cross-site request forgery.

[4] Cyota.http://www.rsa.com/node.aspx?id=3017.

[5] DHAMIJA , R., AND TYGAR, J. The battle against phishing: Dy-
namic security skins. InSOUPS ’05: Proceedings of the Sympo-
sium on Usable Privacy and Security (2005).

[6] HALDERMAN , J. A., WATERS, B., AND FELTEN, E. A con-
venient method for securely managing passwords. Proceedings
of the 14th International World Wide Web Conference (WWW
2005), 2005.

[7] JUNG, E. Passwordmaker. http://passwordmaker.
mozdev.org.

[8] M OSHCHUK, A., BRAGIN, T., GRIBBLE, S.,AND LEVY, H. A
crawler-based study of spyware on the web. InProceedings of
the 13th Annual Network and Distributed System Security Sym-
posium (NDSS 2006) (February 2006).

[9] PARNO, B., KUO, C., AND PERRIG, A. Authentication and
fraud detection: Phoolproof phishing prevention. InProceedings
of Financial Cryptography and Data Security (FC ’06) (2006).

[10] Passmark.http://www.passmarksecurity.com.

[11] Pump and dump. http://en.wikipedia.org/wiki/
Pump and dump.

[12] Quova.http://www.quova.com.

[13] ROSS, B., JACKSON, C., MIYAKE , N., BONEH, D., AND

M ITCHELL , J. Stronger password authentication using browser
extensions. InProceedings of the 14th Usenix Security Sympo-
sium (2005).

[14] RSA SecurID. http://www.rsa.com/node.aspx?id=
1156.

[15] YEE, K.-P., AND SITAKER, K. Passpet: Convenient password
management and phishing protection. InProceedings of the Sym-
posium on Usable Privacy and Security (SOUPS) (2006).

4

