
Securing Network Input via a Trusted Input Proxy
Kevin Borders, Atul Prakash

University of Michigan
{kborders, aprakash}@umich.edu

Abstract

The increasing popularity of online transactions involving sensitive personal data, such as bank account and social
security numbers, has created a huge security problem for today’s computer users. Malicious software (malware)
that steals passwords and other critical user input has led to countless cases of identity theft and financial fraud. Cli-
ent computers remain susceptible to key logging attacks due to inadequate defense against drive-by malware instal-
lation. Trusted browsing virtual machines attempt to mitigate this problem, but fail to protect against many runtime
and Trojan horse malware attacks. One option for securely acquiring sensitive input is TPM-verified trusted execu-
tion. While this method promises to provide the best security, it has serious usability limitations and would require
extensive modifications to both the client and the server.

We propose a new approach for securing network input that relies on a Trusted Input Proxy (TIP). The TIP runs as
a module in a virtual machine architecture that proxies secure network connections. When a user wishes to enter
sensitive data, he or she presses an escape sequence that triggers the TIP to display a secure input dialog. The TIP
will automatically generate a placeholder value based on the input using regular expression approximation (e.g.
123-45-6789 for a SSN). It will then send key presses for the placeholder to the application. Finally, the TIP will
substitute actual data for placeholders as it relays network messages to the server. Although the Trusted Input Proxy
approach relies on a slightly larger trusted code base, it requires no modifications to the server, very few to the cli-
ent, and is far more usable than TPM-verified execution. In this paper, we present the initial design of a Trusted
Input Proxy and compare its merits and shortcomings to those of other approaches.

1. Introduction and Related Work
A growing number of people use the internet for
sensitive financial transactions. Consequently, fraud
and identify theft resulting from stolen credentials has
skyrocketed over the past decade. Online credit card
and bank account fraud now costs financial institutions
billions of dollars every year. Much of this fraud occurs
due to weaknesses in client-side security. As an
example, a hacker can install malicious software that
records keystrokes by getting a user to click on a link to
a malicious website in an e-mail. Once recorded,
keystrokes including data such the user’s name, bank
account password, address, social security number, are
sent back to server and may be used for identity theft or
other fraud.

A number of efforts to improve client-side security,
such as personal firewalls, anti-virus software, and
automatic security updates, have helped to curb the
volume of malware infection. However, these
mechanisms do not protect against most “drive-by
download” attacks, which might involve tricking a user
into downloading malicious software or exploiting a
bug in an application. Systems such as Sandboxie [6]
and Greenborder [1] go further to protect client security
by isolating the web browser. With this approach, a
compromised browser will have limited access to the

rest of the system. Unfortunately, a compromised
browser will have access to sensitive keyboard input
that it receives during a browsing session and can send
that data out over the internet. Furthermore, the
underlying system is still vulnerable to a Trojan horse
attack where the user downloads and installs a
seemingly benign program outside of the sandbox that
contains malware.

We first examine a better way of solving this problem
based on new Trusted Platform Module (TPM)
capabilities for executing a trusted code block to obtain
human input. This method is very secure due to an
extremely small trusted code base (TCB). We find,
however, that this approach is not very portable and
requires extensive client and server-side changes. It can
be vulnerable to a human security problem similar to
standard phishing.

Our main contribution in this paper is the initial design
of a Trusted Input Proxy (TIP) architecture that enables
secure network input. The architecture consists of three
components: keyboard input interception, placeholder
generation, and a secure connection proxy. The user’s
operating system (OS) and applications run inside of a
primary virtual machine (VM) and the TIP module runs
in a TIP VM. The virtual machine monitor (VMM)
sends keyboard and network I/O through the TIP,
which mediates and forwards the device I/O to the

primary VM. The TIP and VMM are considered to be
part of the TCB, and are isolated from attack by the
guest OS. The TIP will intercept a secure input
keyboard escape sequence and enter into secure input
mode. After acquiring sensitive input, it will generate a
placeholder and send it to the guest OS. Finally, the
TIP substitutes real sensitive data for placeholders in
outbound network requests before relaying them to
their destination servers.

The Trusted Input Proxy approach requires no server-
side modifications or management overhead, and
minimal client OS/application changes. Also, we argue
that using an escape sequence for securing input is
much more effective from a usability perspective than
application-initiated secure input. The TIP solution is
portable and backwards compatible (non-TIP clients
can still log in). One shortcoming of the TIP solution is
that it requires the client’s main operating system to run
inside of a VM, which can be a limitation for users who
have scarce hardware resources, run intensive graphical
applications, or require compatibility with obscure
devices. We expect that many of these limitations will
disappear as hardware manufacturers increase
virtualization support. Another disadvantage of a TIP
compared to TPM execution is a significantly larger
trusted code base. However, the TCB is still much
smaller than in a standard OS, and we feel that its larger
size is more than justified by the increase in
deployment practicality and usability provided by the
TIP architecture.

Ross et al. describe a method for protecting passwords
against server-side theft (i.e. phishing) in [5]. Their
solution does not help against a completely
compromised client. Jackson et al. mention obtaining
secure input for web forms [2], but do not discuss how
to run a proxy that inserts sensitive data.
Jammalamadaka et al. propose a novel method for
secure web input on an untrusted client machine using a
trusted proxy and trusted mobile device (e.g. cell
phone) to send sensitive input to the server [3].
Theoretically, this is very similar to the TIP
architecture, with the trusted proxy on the VMM and it
acquiring input directly from the keyboard instead of
from a cell phone. The TIP solution, however, is much
more usable and easy to deploy, requiring the user to
have one computing device to send secure input to a
server instead of three.

2. TPM-Verified Input Acquisition
One method of protecting against key-logger type
attacks is to move input acquisition into a trusted
system component. McCune et al. outline a method for
executing security-sensitive code in an environment
that is completely isolated from the rest of the system
by utilizing TPM capabilities [4]. The TPM verifies a
small block of trusted code, suspends the rest of the
system, allows the code to run, and then restores the
system. During this process, the TPM signs a digest of
the trusted code, its inputs, and its outputs so that the
result can be verified by an external entity. In the case
of secure input, the trusted code could obtain the user’s
password or other sensitive data, ask the TPM to sign
it, encrypt it with the server’s public key, and then hand
it off to the operating system so that it can be sent to the
server without the operating system being able to read
the data or compromise its integrity.

The TPM-verified execution approach does offer a high
level of security due to the very small size of the trusted
code base (TCB), which would just include a keyboard
driver, a simple graphics driver, a TPM driver, and
some setup code. However, it also has some serious
limitations. First, if the server is going to verify the
code execution and resulting value, it needs to have a
public signing key, along with some certification that
the key is legitimate, for every client. On the plus side,
this would add another authentication factor, making
the process more secure. Verifying all these certificates,
however, would require a potentially expensive public
key infrastructure (PKI). Furthermore, one would only
be able to log in from a machine that has been certified
by the server, which constrains accessibility.

Another problem with TPM-verified execution is that
the operating system, which is not trusted, is
responsible for invoking the TPM functionality. Not
only does this require changes to the OS, it also allows
an attacker to modify the OS so that it does not call the
secure input module. Instead, the OS could display
some sort of error and allow the user to proceed with
divulging sensitive data even though the data is not
being sent to the server. This is not only a denial of
service, but a denial of secure service, which has shown
to be a very effective way of getting users to behave
insecurely [7].

A different way of using a TPM for secure input that
does not require a PKI is to have the trusted code
access a secret value using TPM sealed storage and
display the secret to the user. (The secret could be text
or a picture.) This would assure the user that keyboard
input is going to the trusted code and is safe from
eavesdropping. Next, the trusted code could hash the
input (with an optional salt value), or verify the server’s
certificate and encrypt the input so that it cannot be
read by the OS. With this approach, server modification
would still be necessary to decrypt or verify individual
form fields. Displaying a secret for integrity
verification could also enhance the security of the TIP,
described next, against malicious VMM modifications.

3. Trusted Input Proxy Design
The Trusted Input Proxy (TIP) is a module that runs in
its own virtual machine and mediates some I/O between
the physical device drivers and the guest operating
system. An illustration of this architecture can be seen
in Figure 1. In our design, the TIP module acts as a
proxy for secure network connections. It also receives
all keyboard input, and can choose whether or not to
forward key presses to the guest OS. The size of the
trusted input proxy is significant, as it must contain
code to do basic protocol processing for at least SSL
and HTTP. However, it is still far smaller than the
primary virtual machine, which runs all of the user’s
applications.

3.1 Keystroke Interception
The trusted input proxy receives all physical key press
notifications from the keyboard driver in the VMM. It
can decide whether or not to forward each keystroke to
the guest operating system, and can change, replace, or
delete keystrokes. When the user activates an escape
sequence on the keyboard, the TIP will drop the key
event, go into secure input mode, and display a dialog
box on the screen. The escape sequence should be

something that generates a single key event, which
means any of the ctrl, alt, and shift keys combined with
one standard key. It should be something rarely used by
default, like ctrl+alt+F12, but should also be easily
configurable by the user. The machine will remain in
trusted input mode until the user exits out of the dialog
by hitting enter (OK) or escape (Cancel). Optionally, it
may be desirable in the future to allow mouse input for
the dialog box. In this case, clicking on OK or Cancel
would also exit secure input mode.

While the user is in secure input mode, all keyboard
input goes to the TIP, which does not forward it to the
guest OS. Depending on the user’s preference, the
trusted input proxy can either display a dialog with the
masked sensitive input (*’s for characters), the
unmasked sensitive input (to avoid typos), or nothing at
all. Having different escape sequences for each option
is recommended. If the user chooses for the TIP to
display a dialog box, it should appear on top of
anything else in the display, be unreadable to the guest
OS, and also contain the current automatically-
generated placeholder value, which is discussed more
in the next section. The user should also be able to
override the default placeholder value here by
modifying it in the dialog box. When the user is
finished entering secure input, the TIP will generate
keystrokes for the placeholder value and send them to
the guest operating system.

3.2 Automatic Placeholder Generation
When the user enters some sensitive input, such as a
social security number, the application may reasonably
expect that the input passes some simple checks. For
example, it may expect a number in the format “XXX-
XX-XXXX” where the X’s are digits. If the TIP
generates a placeholder that does not pass these checks,
then the verification will fail and the user will have to
manually come up with a placeholder, which may
impede usability. There may be some situations where

Operating System

Network Application

Physical Device Drivers

Hardware

Primary
VM

VMM

Trusted
Input
Proxy
(TIP)

TIP
VM

Figure 1. Trusted Input Proxy architecture. The TIP mediates keyboard input and network I/O.

input validity depends on checksum verification, such
as for credit card numbers. These checks are usually
performed at the server, but could be done on the client.
We plan to investigate this issue in the future, and
create replacement algorithms that also match
checksums or disable client-side checks. Some websites
also have Javascript which will give you a hint about
the strength of the password you are choosing. If the
user enters a six-letter dictionary word for a password,
and the placeholder is a random ten-digit alphanumeric,
then the user may get a false sense of security from the
client-side checks.

To deal with this problem, the TIP uses a regular
expression matching and generation list that generates
an equivalent placeholder for given sensitive input. It
tries to match the input against an ordered list of
regular expressions, with less restrictive regular
expressions at the end. Table 1 lists some sample
regular expressions, in approximate order from most to
least restrictive, and what they should be replaced with
to maximize equivalency without compromising private
information. In the case where the TIP is unable to
come up with an acceptable replacement or the user
wants the replacement to be something easy and
memorable, he or she can manually specify the
placeholder. The goal of placeholders is to make the
input proxy process as simple as possible and avoid
changes in user behavior.

3.3 Secure Network Connection Proxy
In order to proxy secure network connections, the TIP
module needs to effectively act as a man-in-the-middle
without compromising security. For SSL connections,
our solution is to add a certificate for the TIP to the list
of root certification authorities in the VM’s browser.
This way, the trusted input proxy can copy the contents
of the server’s certificate (after verifying its

authenticity) into a new one, replacing the server’s
public key with its own. This way, any errors or
warnings that may appear as a result of an out-of-date
certificate or a certificate that does not match the
hostname will still appear, and the trusted input proxy
can effectively intercept and modify SSL traffic.
Similar approaches can be taken for other secure
network protocols. With protocols like SSH that rely on
manual key fingerprint verification, the TIP will need a
way of displaying the actual key fingerprint to the user.
Support for additional protocols would increase the size
of the TCB and require writing extensions to the TIP.
However, most people only use SSL and possibly one
other popular protocol for secure communication,
limiting the size of the TCB.

Once the TIP has established a secure connection with
both the virtual machine and the remote server, it
inspects every message that it gets from the client to
search for placeholder strings. The TIP will be more
effective if it has some knowledge of the protocol, such
as HTTP, so that does not have to rely on a blind
search. This is important for protocols where the client
sends a lot of random data that has the potential to
match a random placeholder. Also, it is necessary for
protocols where the placeholders are encoded before
being sent over the wire. An example is HTTP
authorization, which uses base-64 encoding. With
HTTP over SSL, the TIP decodes the authorization
field to look for placeholders, and also looks for them
in parameters of GET and POST requests according to
the specification. When it finds a known placeholder,
the TIP then replaces it, rebuilds the request, and
forwards it to the server.

Table 1. Examples of some regular expressions for placeholder generation. (Perl format)

Regular Expression Meaning Examples Replace With
([0-9]+[-)(]*){1,} One or more digits, optionally

followed by ‘-‘ ‘(‘ ‘)’ or ‘ ’, re-
peated n times where n > 0

135-79-2468,
(555) 121 2121,
1123

Randomly replace each
digit with another digit
(leave other characters)

Upper or Lower case dic-
tionary word

Any word in a password crack-
ing dictionary – include names
and common strings like “asdf”

secret, password,
asdf, John

Random word of same
case and length

[a-z]+ or [A-Z]+ All-upper or all-lower case
string

xbwfel, HJERGI Random string with same
length and case

[a-zA-Z0-9]+ Alpha-numeric string AbC456,
gOwe23Jikn45p,
oioj3249

Random string with same
length and at least one
character from each set
present in string (i.e. up-
per, lower, or digit)

4. Benefits and Limitations of a Trusted
Input Proxy

The Trusted Input Proxy architecture requires no
changes to the user’s standard operation system and
applications other than adding the TIP as a certification
authority and migrating the OS into a virtual machine,
which can be done efficiently and transparently. The
TIP architecture is also transparent to the server, which
requires no modification. In terms of practical security,
a trusted input proxy is likely to be accepted and used
correctly by people who care about their privacy.
Entering a two or three-key simultaneous escape
sequence then hitting enter afterwards is a minimal
perturbation to a user’s standard workflow, and users
already have a good idea of what data is sensitive and
requires secure input (passwords, SSN, account
numbers, etc.). Furthermore, the user will become
accustomed to entering sensitive data through the TIP,
making it hard for malware on the guest OS to trick a
user into typing sensitive input without using the
escape sequence. (The escape sequence will guarantee
confidentiality as long as the TIP is installed.)

The Trusted Input Proxy architecture relies on a trusted
code base of moderate size, including network I/O,
keyboard drivers, and placeholder generation code. If
code base size is a concern, SSL interception and
certificate proxying can be done by a network service
so that it is not part of the TCB. The TCB is still much
smaller than that of a standard operation system, and its
size compared to TPM-verified code is justified by its
hugely improved usability and reduced deployment
requirements. The TIP is also currently limited by its
reliance on virtual machine technology. Some users
may not want to run their main operating system inside
of a VM for performance reasons. Virtual machines
require more system resources (especially memory) and
can be slightly slower for I/O intensive applications.
However, virtual machine performance is usually very
good compared to native execution, and it continues to

get better as processor manufacturers add features to
optimize virtualization.

5. References
[1] Green Border Technologies. GreenBorder’s

Virtual Session Architecture.
http://www.greenborder.com/technology/
architecture.php, 2007.

[2] C. Jackson, D. Boneh, and J. Mitchell. Spyware
Resistant Web Authentication using Virtual
Machines.
http://crypto.stanford.edu/spyblock/spyblock.pdf,
2006.

[3] R. Jammalamadaka, T. Van Der Horst, S.
Mehrotra, K. Seamons, and N. Venkasubramanian.
Delegate: A Proxy Based Architecture for Secure
Website Access from an Untrusted Machine. In
Proc. of the 22nd Annual Computer Security
Applications Conference (ACSAC '06), 2006.

[4] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter,
and A. Seshadri. Minimal TCB Code Execution
(Extended abstract). In Proc. of the 2007 IEEE
Symposium on Security and Privacy (SP ’07),
2007.

[5] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J.
Mitchell. Stronger password authentication using
browser extensions. In Proc. of the 14th Usenix
Security Symposium, 2005.

[6] Sandboxie Transient Storage.
http://www.sandboxie.com, 2007.

[7] S. Schechter, R. Dhamija, A. Ozment and I.
Fischer. The Emperor's New Security Indicators:
An Evaluation of Website Authentication and the
Effect of Role Playing on Usability Studies. In
Proc. of the 2007 IEEE Symposium on Security
and Privacy (SP ’07), 2007.

