
Shame on Trust in Distributed Systems

Trent Jaeger, Patrick McDaniel, Luke St. Clair
Pennsylvania State University

Ramón Cáceres, Reiner Sailer
IBM T. J. Watson Research Center

1 Introduction
Approaches for building secure, distributed systems have
fundamental limitations that prevent the construction of dy-
namic, Internet-scale systems. In this paper, we propose a
concept of a shared reference monitor or Shamon that we
believe will provide a basis for overcoming these limita-
tions. First, distributed systems lack a principled basis for
trust in the trusted computing bases of member machines.
In most distributed systems, a trusted computing base is as-
sumed. However, the fear of compromise due to miscon-
figuration or vulnerable software limits the cases where this
assumption can be applied in practice. Where such trust
is not assumed, current solutions are not scalable to large
systems [7, 20]. Second, current systems do not ensure
the enforcement of the flexible, distributed system secu-
rity goals. Mandatory access control (MAC) policies aim
to describe enforceable security goals, but flexible MAC
solutions, such as SELinux, do not even provide a scal-
able solution for a single machine (due to the complexity of
UNIX systems), much less a distributed system. A signifi-
cant change in approach is necessary to develop a principled
trusted computing base that enforces system security goals
and scales to large distributed systems.

Our proposal is to develop scalable mechanisms for com-
posing a verifiable reference monitoring infrastructure that
spans Internet-wide distributed systems. We refer to a
set of reference monitors that provides coherent security
guarantees across multiple physical machines as a Sha-
mon 1. While this may sound like a mere extension of
the well-known reference monitor concept, we propose sev-
eral key differences: (1) the credentials of secure hardware
(e.g., Trusted Computing Group’s Trusted Platform Mod-
ule), rather than users, are used to authenticate individual
reference monitoring systems in the Shamon ; (2) trust in
the Shamon is based on attestation of reference monitoring
properties: tamperproofing, mediation, and simplicity of
design; (3) virtual machine monitoring is used to establish
coarse-grained domains, which results in significant sim-
plification of MAC policies; (4) policy analyses verify that
these MAC policies satisfy the Shamon application’s secu-
rity goals when enforced by the Shamon; and (5) based on
this restricted definition of trust, a focused logic is defined
that enables scalable evaluation of this trust by components

1The name is short for Shared Monitor and related to the word shaman
meaning “... a medium ... who practices ... control over natural events”
words removed for effect, not necessarily accuracy).

of the distributed system that is also resilient to dynamic
changes in the application.

The Shamon approach addresses the fundamental chal-
lenges described above. First, trust is built from the bottom-
up via secure hardware credentials that enable attestations
of virtual machine-based enforcement for each machine.
Second, the MAC policy enforced by the Shamon is used
to prove enforcement of system security goals. We de-
fine a logical representation for verifying these criteria that
enables scalable management of large Shamon even under
changes in application configuration. Each of the five tasks
that convert a reference monitor into a Shamon presents sub-
stantial research challenges, but we aim to demonstrate that
each has tractable solution potential and that the resultant
Shamon system will provide a foundation for large-scale
distributed authorization. To motivate its design, we intro-
duce our prototype application of the Shamon in the follow-
ing section.

2 Application
The Playpen is a Xen-based, virtual machine (VM) environ-
ment for the students taking security courses at Pennsylva-
nia State University. Each student is given their own virtual
machines in the Playpen. Over the course of the semester,
students are required to configure and build security appara-
tus to defend their machines against attacks from the faculty
and TAs. The isolation, persistence, and mobility of the VM
environment provides ideal conditions for pedagogy: users
can experiment with security apparatus under the controlled
environment.

The current Playpen is the prototype for a larger project
supporting wide-area mobile and secure computing envi-
ronments. The long term goal is to extend the Playpen to en-
compass all aspects of university life. In this, a user would
be given one or more virtual machines that would migrate
to the location where they are working. The central chal-
lenge of this work is to support the users’ ability to move
freely within the university environment. The system must
securely support arbitrary migration to previously unknown
hardware at a previously unknown location and share data
with previously unknown collaborators. Note that while the
environment aims at a single university system, we are not
centrally-administered: there is different administration at
each campus, and some departments also administer their
own machines.

Consider a typical day of Alice the graduate student in

1
HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 19



this new university. She wakes up at noon and goes to class.
Alice joins a live coalition of class participants by logging
into a host in her classroom. She exits the coalition at the
end of class, and at lunch she surfs the Internet and ex-
changes personal communication within her protected en-
vironment at the local student union. After lunch, she heads
to the laboratory and performs research and shares data with
the other graduate students. At the end of the day, she meets
with her advisor and shares summary data and exchanges
results. She heads home and plays a massively multiplayer
game with thousands of other gamers until dawn over the
Internet.

Such is the nature of university life. The ”roles” of
Alice’s computing environment and the environments in
which she interacts evolve constantly; from class partic-
ipant, personal communication, researcher, advisee, and
gamer. Moreover, the set of hosts to which she has an as-
sociation is also changing. What is interesting here is not
that this somehow changes the way Alice lives, but that her
computing environment follows her throughout her life.

The security challenges of this environment are non-
trivial. The physical machines within the open university
environment are largely unknown and often compromised.2

The applications are as diverse as the environments in which
Alice lives, from classroom to research to gaming. Further-
more, the collaborations in which Alice participates change
hourly, and often form and disband organically. It is clear
that: (1) supporting this environment requires significant se-
curity, and (2) current commodity environments (e.g., dis-
tributed file systems and VPNs) do not support it. Note that
large corporate environments are similar–users will move
freely through a largely insecure complex and use data and
applications as needed.

Research that enables articulation of finer-grained poli-
cies across distributed systems, for distributed file access
(e.g., [15, 3]) and trust management (e.g., [4, 14]), often
assume trust in the trusted computing base as well. An ex-
ception is the Taos operating system approach [2] which
has a form of secure booting for establishing trust in the in-
frastructure. However, building trust in a single machine is
insufficient. We need to build trust in enforcement across
distributed applications within the distributed system (e.g.,
each of Alice’s roles) and ensure that distributed authoriza-
tion policy enforces the security goals of those applications.
In order for this to be truly useful, it must enable large dis-
tributed applications to be supported.

The five key design requirements identified in the pre-
ceding section are reflected in the university environment:
users need to vet the many untrusted machines in some re-
liable and secure way; they need to vet the policy enforce-
ment infrastructure (simplicity, tamperproofing, and media-
tion); they need to articulate an inter-host (sharing) security
policy; they need to ensure that all hosts sharing data pro-

2Would any sane person completely trust a host in a open university
laboratory? Seriously.

vide a consistent view of security; and it must scale – there
are over 41,000 students at Penn State spread out over 24
campuses.

3 Coalitions and Shamon

Physical Machine Physical Machine

Physical Machine Physical Machine

VM

VM

VM VM

VM

VM

VM

VM

VM

VM

VM

VM

VM
VM

VM

VM

Coalition

Untrusted

Network

Figure 1: Example of a distributed coalition. Virtual ma-
chine (VM) instances sharing common Mandatory Access Con-
trol (MAC) labels on multiple physical hypervisor systems are all
members of the same coalition.

Figure 1 illustrates the conceptual idea for future dis-
tributed applications. A distributed application is a coali-
tion of VMs that executes across multiple physical plat-
forms. Each member of the coalition may reside on a dif-
ferent physical machine, which may itself execute multiple
coalitions. The physical machines themselves each have a
reference monitor capable of enforcing MAC policies over
all of their VMs.

We define the Shamon as follows. A Shamon is a set of
reference monitors serving a coalition by enforcing its se-
curity goals. A reference monitor may belong to multiple
Shamon, so its enforcement must ensure the satisfaction of
the security goals for each. The challenge is to establish
trust in the Shamon reference monitors’ enforcement of a
coalition security goal. This trust must be upheld in a scal-
able fashion as VMs join the coalition or migrate between
machines. In so doing, the Shamon provides authorization
across an entire coalition as if it were a single machine.

For Alice, each VM in a coalition represents an instance
of her work on a specific task. She may work on her re-
search in the lab, in class, or in the student union, and her re-
search coalition enables these VMs to communicate. How-
ever, her gaming and browsing VMs would not be part of
this coalition. In fact, the research coalition enables iso-
lation of the research VMs from the gaming and browsing
VMs even when they are running on the same machine at
the same time.

We envision different requirements for managing Alice
VMs than in a traditional VM isolation system. First, the se-
curity focus is to separate Alice’s workloads based on trust
(i.e., trusted from untrusted) or domain (i.e., research from
school work), but total isolation is too restrictive. For ex-

HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association20



ample, some data from an untrusted domain (e.g., Google
search results) may be useful in a trusted domain (e.g., re-
search paper). These are finer-grained and more flexible
security requirements than are typical of VM systems. Sec-
ond, the VMs will be more dynamic and composed into
larger systems than is traditionally the case. Also, some
VMs may be destroyed on a frequent basis. In addition,
large-scale coalitions with changing memberships may be
constructed for particular causes that Alice may join, such
as conferences, auctions, rallies, or social events.

4 Shamon Challenges
The basic mechanism for composing a coalition is shown in
Figure 2. Each machine that will join a coalition must have
a credential registered with the coalition authority, such that
statements made on behalf of the machine (e.g., attesta-
tions) can be verified (messages 1 and 2). Joining requires
attestation of Shamon properties which results in a proof
of acceptance from the authority (messages 3 and 4). This
proof is used to communicate with another coalition mem-
ber, and this coalition member establishes a dependency on
this proof and any status changes from the authority (mes-
sages 5 through 7).

The scalability of the approach comes from reusing coali-
tion authority attestations at join time and deferring proof of
integrity until communication is initiated. These advantages
are similar to typical PKI approaches where the proof of the
possession of a private key is generated by an authority and
verification of this possession is done when communication
is initiated.

There are some important differences, however, between
this approach and PKI. First, a major benefit is that trust is
built from machines rather than individuals. Thus, trust in
the trusted computing base is built in a bottom-up manner
along with the booting of the trusted computing base itself.
Keys can be stored and used in secure hardware rather than
in application software. Second, a major challenge is that a
reference monitor’s status may change, motivating a revoca-
tion of the member. Remember that we only depend on the
reference monitor and coalition MAC policy being correct.
Normally, these will not change, but we need a lightweight
mechanism to convey the status quo without missing a com-
promise. In theory, TPM statements of the integrity value
(and a nonce for freshness) could be provided and checked
frequently at a low cost, except the current TPMs are slow
and use public key cryptography. The benefit of bottom-up
mechanism to establish trust should motivate an investiga-
tion into making efficient integrity maintenance practical.

Below, we assess the five Shamon features from Section 1
relative to Alice’s requirements.

Shamon Authentication In order to verify a Shamon for
joining a coalition, we must be able to authenticate the ma-
chine upon which the Shamon runs. Secure hardware of the
machine, such as the Trusted Computing Group’s Trusted
Platform Module [1] (TPM) is capable of generating cre-

dentials that can be certified by an authority (e.g., using Di-
rect Anonymous Attestation). Such credentials can be used
to register the machine for use in a coalition via such an au-
thority, called a coalition authority, as shown in Figure 2.
Note that since TPMs are not tamperproof, some degree of
physical security is required. For Alice, different physical
requirements may be necessary for different coalitions: the
research coalition may require machines protected by the
university, whereas her coalition for completing her tax re-
turn may only require machines that meet her physical secu-
rity requirements. Acceptable models combining physical
security and credentials are a research challenge.

Shamon Attestation When Alice picks a machine to join
a particular coalition, this machine must prove that it can
join the Shamon. This involves the following steps: (1) pro-
vide an integrity measurement of Shamon components us-
ing remote attestation protocols based on the TPM; (2) ob-
tain the coalition’s MAC policy from a coalition authority;
and (3) construct a proof of its consistency with this policy
(e.g., in labeling) and its ability to enforce the security goals
required. Remote attestation approaches have been devel-
oped that enable measurement of trusted code and informa-
tion flow policies for trusted applications [11]. We envision
a significant benefit from having the coalition determine the
MAC policy for the application rather than trying to con-
figure systems a priori. Note that we can piggy-back the
attestation verification on the negotiation of secure commu-
nication channels (done as a result of message 5), such as
for Labeled IPsec [10].

User Authentication Also, the users must authenticate
themselves to the Shamon infrastructure. The challenge is
that the user does not necessarily have trust in the physi-
cal platform that she is using at a particular time. Even a
machine that may appear to be shutdown may actually be
compromised (e.g., by a virtual machine rootkit [13]). A
challenge for the user is to establish that she can submit her
authentication secrets without fear of losing them. The user
must be to verify a statement from an authority she trusts
(e.g., a coalition authority) that vouches for the fresh attes-
tation of the platform that she is actually using. Enabling
a user to verify the authenticity of a machine requires a
trusted path in general, although some social mechanisms
may be effective in controlled environments, such as a cam-
pus (e.g., trusted labeling, such as proposed for room ac-
cess [17]).

Shamon MAC Policy Simplicity The basis for simplify-
ing MAC policy is the use of virtual machine communica-
tion as the basis for security guarantees. In a Xen-based sys-
tem, sHype [19] controls inter-VM communication by au-
thorizing only Xen grant tables (i.e., shared memory), Xen
event channels (i.e., basic IPC), and Linux IPsec tunnels
(i.e., network communication via Xen’s domain 0) must be
controlled. Other system resources, such as disk space and
memory are partitioned for virtual machines, so they are

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 21



Coalition

Authority

Alice's

New Machine

Research

Colleague's 

Machine
5

1

2

3

4
6

7

1: Register physical machine (e.g., TPM) with
verification infrastructure

2: Confirm successful registration
3: Join coalition request (attest enforcement

and security goals)
4: Proof of verification for join
5: Alice sends request (IPsec negotiation)
6: Accept proof of verification
7: Notify change to member status

Figure 2: Coalition member join process: Secure hardware enables verification of Shamon enforcement of security goals which is
conveyed when Alice participates with another member.

isolated by default. As a result, a much simpler MAC pol-
icy for inter-VM communication can be defined [16] than
for a UNIX system (e.g., SELinux strict policy).

VM isolation is likely too restrictive for Alice’s tasks,
as we discussed earlier, because there will be a benefit in
transferring information from applications in one VM to
another. Because VMs will be application-focused, we sur-
mise that it will be more appropriate for applications to dic-
tate the enforcement of these security requirements rather
than operating systems (although they may be implemented
via OS mechanisms). Recent work in information-flow lan-
guages [9] and security-aware code [6] may provide a ba-
sis for integrity protections based on a combination of VM
protections and limited application protections [21]. For ex-
ample, Alice’s document application may prove that it can
handle the receipt of low integrity text data via limited, fil-
tering interfaces.
Shamon Security Goal Verification A consistent secu-
rity policy includes all facets of MAC policy definition, in-
cluding subjects and object labeling mechanisms (i.e., de-
ciding how labels are assigned), permission assignments
(i.e., assigning permissions to subjects), and label transi-
tions (i.e., changes in subject labels for a process), if any.
Since this is provided to the Shamon upon joining a coali-
tion, the MAC policies used in the coalition may be mea-
sured via attestation. Remote parties can then verify that the
MAC policy satisfies coalition security goals in the context
of the Shamon and other coalitions running on that system.
Recent work in MAC policy analysis shows that informa-
tion flow security properties can be verified for very com-
plex policies [8, 12, 22]. In general, verification involves
detection of information flow problems where secret data
may be leaked or low integrity data may enter a trusted ap-
plication. Thus, verification can detect a VM that is leaking
Alice’s research information or receiving an untrusted exe-
cutable. Using application-level enforcement approaches as
described above would enable limited I/O for applications
entrusted to perform such operations using only approved
interfaces.
Shamon Trust Logic In order to reason about the trust
state of the Shamon across large system, we need a rep-
resentation for this state. We propose a basic predicate
logic (space limits prevent its discussion) that defines a few

specific predicates that enable reasoning about attestations
meeting enforcement goals, MAC policies meeting security
goals, and virtual machines running on enforcing machines.
We believe that a logic focused on these specific types of
properties will enable practical system constructions, but
much research is to be done. The challenges in designing
such a logic include: (1) accuracy in representing real be-
havior; (2) ability to efficiently handle coalition dynamics
(i.e., use monotonic logic under changing conditions); and
(3) limitation of manual policy specification. Alice’s ma-
chine must be able to correctly determine that no attack on
the enforcement of coalition security goals (i.e., the Sha-
mon ) can go undetected (within a reasonable probability),
even when the coalition membership changes (perhaps due
to a detected attack), and with little or no input from Alice
or her system’s administrators.

5 Thinking About Usability
To illustrate the challenges in building a distributed sys-
tem that can be practical, we examine two approaches used
to build distributed systems that have had some success:
(1) automated teller machine (ATM) networks and (2) vir-
tual network computing (VNC). We do not mean to imply
that coalitions supported by Shamon have the same require-
ments as ATMs or VNCs (although close to some versions
of the latter), but reviewing the requirements of a success-
ful distributed infrastructure may be illuminating in trying
to build a more flexible approach. We then compare the
environment of Shamon systems to that of ATM networks
and VNC systems to identify challenges in making the Sha-
mon approach practical.

5.1 Automated Teller Machine Networks
ATMs enable users to perform specific types of transac-
tions using a distributed network of machines. Like the
Shamon approach, the ATM networks define approaches
for authentication (users and ATMs), attestation (banks ver-
ify ATM software), and security goals (specific to banking
transactions).

While there have been rogue ATMs installed in the past
that have been used to steal user’s PINs, users have come to
trust a visual authentication of ATMs. Such authentication

HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association22



partly comes from physical security (i.e., located in a bank
or public place) where someone might notice a rogue sys-
tem. Of course, the fact that the banks assume the responsi-
bility for most fraud is also important. In the Shamon sys-
tem, we may want to leverage social notions of location and
responsibility where possible. For example, a university lab
may guarantee secure boot of its machines. However, more
effort will be required in ensuring this guarantee than an
ATM case. Otherwise, users will have to authenticate ma-
chines via coalition authorities using a strong cryptographic
protocol. Users cannot enter secrets (e.g., ATM PINs) into
machines unless a means for validating their authenticity
can be provided.

The banks require attestation of the ATM systems before
performing transactions on behalf of customers. Currently,
attestation is done by the tamperproof, secure coprocessor.
The cost of tamperproofing is too high for Shamon systems,
so we can only assume Trusted Computing Group (TCG)
Trusted Platform Modules (TPMs) or similar. The lack of
tamperproofing means that physical security guarantees are
required for security. Perhaps the agreements for physical
security necessary to authenticate the coalition systems can
be leveraged.

The most significant difference between an ATM and a
Shamon system will be that the user can get their applica-
tions downloaded to the coalition machine and request en-
forcement of their security requirements by that machine.
ATMs provide applications for the specific authenticated
user, and no sharing of information between applications
is permitted. A user may have multiple application VMs
and must be able to share information among them. Also,
these VMs may have to interact with other VMs on other
machines. The coalition authority must support the user in
identifying applications, security requirements, and ensur-
ing that the security requirements are enforced. The individ-
ual machines must be able to interpret and enforce the secu-
rity requirements. The expanded application suite probably
has a bigger impact on users than coalition authorities or
machines. Well-defined, but effective, means of usage will
have to be determined.

5.2 Virtual Network Computing
In Virtual Network Computing (VNC), the interface to a
particular base machine is exported to another remote ma-
chine where the user can interact with the base machine in
the same manner as if the user was local to that machine.
Such a mechanism has evolved from the export of individ-
ual terminals via XWindows [23] to the export of entire
screens to machines with different operating systems via
RealVNC [18] to the export of interfaces via HTTP to any
machine via GoToMyPC.com [5]. The latter enables access
to a base machine via a web browser on any remote machine
with minimal previous configuration.

Security on these systems mainly focuses on user authen-
tication and secure communication. RealVNC aims to pro-

vide a remote access, but the idea is that the user has a re-
mote machine that is under her control (e.g., her personal
laptop). Thus, attestation is not strictly necessary. GoTo-
MyPC.com advertises access to your computer from any
machine on the Internet, but security focuses on user au-
thentication and secure communication rather than the in-
tegrity of the computer being used. The mobile user goes to
the GoToMyPC.com website to be authenticated and setup
a secure communication channel to the base machine. The
website authenticates the user, but does not verify the in-
tegrity remote system. It is the user’s responsibility to de-
tect a malicious system much as in the ATM case, but a
fraudulent or compromised computer system is much more
likely in this case. Shamon attestation aims to verify the in-
tegrity of such machines to ensure mandatory integrity re-
quirements are met.

In VNC systems, access control requirements are en-
forced on the base machine as that is where the compu-
tation takes place. Thus, VNCs export interfaces, but not
access control requirements. As a result, there is no con-
trol of information once it reaches the remote machine. A
compromised machine can leak data, so mandatory access
control (e.g., multi-level security) cannot be enforced. The
Shamon approach aims to ensure coherent security enforce-
ment across the machines in each coalition.

6 Conclusions
In this paper, we proposed the concept of a shared ref-
erence monitor or Shamon as the basis for building dis-
tributed systems that enforce intended security goals. This
approach leverages the secure hardware for building trust
from the bottom-up, virtual machines for simplifying MAC
policy for verification, and a trust logic for representing
Shamon trust state. Initial work shows promise, but key
challenges remain, such as accurately tracking the integrity
of individual systems.

References
[1] Trusted Computing Group. http://www.

trustedcomputinggroup.org/, Mar. 2005.

[2] M. Abadi, E. Wobber, M. Burrows, and B. Lamp-
son. Authentication in the Taos Operating System. In
Proceedings of the 14th ACM Symposium on Operat-
ing System Principles, pages 256–269, Asheville, NC,
USA, 1993.

[3] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin.
The CRISIS wide area security architecture. In Pro-
ceedings of the 7th USENIX Security Symposium, Jan.
1998.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. The KeyNote Trust Management System,
version 2. IETF RFC 2704, Sept. 1999.

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 23



[5] Citrix Online, Inc. GoToMyPC: Remote Access to
Your PC from Anywhere, July 2006. http://www.
gotomypc.com/.

[6] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy
code for authorization policy enforcement. In Pro-
ceedings of the 2006 IEEE Symposium on Security and
Privacy, May 2006.

[7] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based plat-
form for trusted computing. In Proceedings of the
19th ACM Symposium on Operating System Princi-
ples(SOSP 2003), Bolton Landing, NY, USA, Oct.
2003.

[8] A. L. Herzog, J. D. Guttman, D. R. Harris, J. D. Rams-
dell, A. E. Segall, and B. T. Sniffen. Policy analysis
and generation work at MITRE. In Proceedings of
the first Annual Security-enhanced Linux Symposium,
March 2005.

[9] B. Hicks, K. Ahmadizadeh, and P. McDaniel. From
Languages to Systems: Understanding Practical Ap-
plication Development in Security-typed Languages.
Technical Report NAS-TR-0035, Penn State NSRC,
2006.

[10] T. Jaeger, D. King, K. Butler, S. Hallyn, J. Latten,
and X. Zhang. Leveraging ipsec for mandatory per-
packet access control. In Proceedings of the Sec-
ond IEEE Communications Society/CreateNet Inter-
national Conference on Security and Privacy in Com-
munication Networks, Baltimore, MD, USA, Aug.
2006.

[11] T. Jaeger, R. Sailer, and U. Shankar. Prima: Policy-
reduced integrity measurements architecture. In Pro-
ceedings of the 11th Symposium on Access Control
Models and Technologies, Lake Tahoe, NV, USA,
June 2006. To appear.

[12] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity
protection in the SELinux example policy. In Proceed-
ings of the 12th USENIX Security Symposium, pages
59–74, Aug. 2003.

[13] S. T. King, P. M. Chen, Y. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch. Subvirt: Implementing mal-
ware with virtual machines. In Proceedings of the
2006 IEEE Symposium on Security and Privacy, May
2006.

[14] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation
logic: A logic-based approach to distributed autho-
rization. ACM Transactions on Information and Sys-
tem Security (TISSEC), 6(1):128–171, Feb. 2003.

[15] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file sys-
tem security. In Proceedings of the 17th ACM Sym-
posium on Operating Systems Principles (SOSP ’99),
pages 124–139, 1999.

[16] J. McCune, S. Berger, R. Cáceres, T. Jaeger, and
R. Sailer. Deuterium: A system for distributed manda-
tory access control. Research Report RC23865, IBM
T.J. Watson Research Center, Feb. 2006. In submis-
sion.

[17] J. McCune, A. Perrig, and M. Reiter. Seeing is be-
lieving: Using camera phones for human-verifiable
authentication”, booktitle = ”proceedings of the 2005
ieee symposium on security and privacy”, address =
Oakland, CA, USA, month = may, year = 2005.

[18] RealVNC Ltd. About RealVNC, July 2006. http:
//www.realvnc.com/.

[19] R. Sailer and et al. Building a MAC-based security ar-
chitecture for the Xen opensource hypervisor. In Pro-
ceedings of the 21st Annual Computer Security Appli-
cations Conference (ACSAC 2005), Miami, FL, USA,
Dec. 2005.

[20] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, USA,
Aug. 2004.

[21] U. Shankar, T. Jaeger, and R. Sailer. Toward au-
tomated information-flow integrity verification for
security-critical applications. In Proceedings of the
2006 ISOC Networked and Distributed Systems Se-
curity Symposium (NDSS’06), San Diego, CA, USA,
Feb. 2006.

[22] Tresys technology, SETools policy tools for SELinux.
http://www.tresys.com/selinux/
selinux\ policy\ tools.shtml.

[23] X.Org. X.Org Foundation, July 2006. http://
www.x.org/.

HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association24


