
Privacy as an Operating System Service

Sotiris Ioannidis
si@cs.stevens.edu

Stevens Institute of Technology

Stelios Sidiroglou
stelios@cs.columbia.edu

Columbia University

Angelos D. Keromytis
angelos@cs.columbia.edu

Columbia University

1 Introduction
The issue of electronic privacy has of late attracted con-
siderable attention. The proliferation of Internet services
and, perhaps unavoidably, Internet crime, in conjunction
with expanded government monitoring of communica-
tions has caused irreparable damage to the basic defini-
tion of privacy (the state or condition of being free from
unwanted surveillance1).

Implementing privacy in personal computer systems
has traditionally been the domain of the paranoid com-
puter specialist. In order for basic privacy to become per-
vasive among the non-technical user base, we believe that
it must imitate the usage of other successful security (and
other) services. Services like filesystem encryption, email
and web security are successful because they are invis-
ible to the user. Other services (not related to security)
such as backups, networking, file searching, etc., also gain
traction by being well integrated with the user’s operating
environment. In most cases, this means embedding such
services in the OS.

In this work, we propose a new paradigm for imple-
menting privacy, as an operating system service. We be-
lieve that privacy, similarly to other security services, is a
service that has cross-application appeal and must there-
fore be centrally positioned.

Privacy as on operating system service has some clear
advantages:

• Unification: Traditionally, functionality that needed
to be shared across multiple applications was in-
cluded in the OS, essentially forming the “ultimate”
library.

• Transparency: One of the greatest advantages of hav-
ing privacy as an OS service is the potential trans-
parency to the end user since it removes the need

1Paraphrased from Apple’s Dictionary application.

of installing, configuring and managing third-party
tools.

• Management: Privacy as an OS service allows for a
single point of privacy scrubbing2 and privacy-policy
enforcement. Having a central location for imple-
menting policy and privacy scrubbing greatly sim-
plifies the administration of privacy. Furthermore,
it can increase privacy robustness since scrubbing is
not implemented by disjoint programs. Finally, a
centralized location facilitates privacy maintenance
as new privacy consideration become easier to inte-
grate,

On the other hand, there are some potential problems
arising from an OS-centered solution:

• Protocol Spanning: The operating system must have
knowledge of the data and meta-data representation
of applications. It needs to use this information to
sanitize private information for each application in
the system, or at least for those applications that the
user has specified. For example, in order to scrub
user name information in Microsoft Word and Open
Office documents, the scrubbing module will have to
be able to parse and according to policy remove user
name references in both formats.

• Single Point-of-Failure: Adopting a centralized op-
erating system approach introduces the risk of global
failure. If the operating system has a fault in the way
it sanitizes private information, all applications will
be affected.

• Performance: It is possible that due to the central-
ized nature of an OS-center solution, that we might
cause a performance bottleneck when executing pri-
vacy operations.

2The process of removing personally identifying information while
maintaining the integrity of the data [16].

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 45



Privacy
scrubbing
Module

Application-specific scrub modules: doc, pdf, html,etc

Protocol-specific scrub modules: http, smtp, etc,.

Privacy Gray Box 

Privacy 
proxy

(black box)
Network

Operating System

File System

Figure 1: Architectural overview: A privacy-servicing module lives inside the operating system. File and network requests
as well as other relevant system calls are redirected to this module where scrubbing happens. The privacy module can be
extended with application- or protocol-aware modules. For a purely network-oriented architecture, the privacy module can
be a proxy “black box” that scrubs traffic on the fly.

2 Approach
Having identified the benefits of providing privacy as an
operating system service, the question that arises is what
exactly will this service provide to the user and how will
it be implemented.

We envision the following functionality for privacy en-
hanced operating systems:

• Transparent, privacy-providing storage and network:
The file system and the network stack will include
mechanisms that scrub data according to the privacy
policy.

• Privacy-enhanced system calls: A privacy layer im-
mediately below the system-call layer, where data
can be scrubbed as they enter or exit the kernel.

• Privacy Proxies (Middleware): Network services
without local support for privacy should be able to
utilize proxies that provide such functionality.

• Privacy Libraries: Common code modules that
allow application developers to integrate privacy-
preserving services (a sort of “libwrap” [18] but for
privacy).

• Privacy-policy Management: The OS must provide
an interface that allows users and applications to
specify various types of privacy requirements that
must be provided.

2.1 Components
In the past, there have been a couple of attempts at im-
plementing privacy at the system level, such as Domain
Type Enforcement [6] and Mandatory Access Control
[14]. Unfortunately, these systems were plagued by issues
of complexity that rendered them unusable, especially for
the non-technical user.

Services like Spotlight in Mac OS X [1] and Mi-
crosoft’s upcoming Vista filesystem have facilitated the

2

HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association46



process; they introduced application-aware filesystems
through the use of meta-files or extensions. Given that
there are mechanisms available to parse particular file
structures, how can we use this ability to implement pri-
vacy?

There are a number of available tools that perform data
scrubbing on a per file basis. The majority of these tools
treat the file as a black box. For example, they will remove
cookie, history, document history, log files, and prefer-
ence files. These techniques work well when the user
does not care about the posterity of the data, but they can-
not address more complex information scrubbing where
often the only course of action is manual removal.

Manually scrubbing files can be an extremely arduous
process, as shown by a document published by the NSA,
on how to safely publish reports that were created using
Microsoft Word to PDF [3]. The highly manual process
involves labor-intensive techniques such as creating a new
Word file where the contents of the original report are
pasted, sensitive areas replaced with garbage text and then
exported to PDF. PDF offers the ability of selectively hid-
ing text portions at the code level. However, when this
is not coupled with encryption, the underlying code for
hiding text can be easily bypassed [4].

2.2 Deployment

As illustrated in Figure 1, we envision a number of possi-
ble deployment architectures:

• White box: In this scenario, the privacy module
resides inside the operating system. Network and
filesystem requests can be intercepted or redirected
to application- or protocol-specific scrubbing mod-
ules.

• Black box (proxies): Under this context, privacy
modules are implemented completely outside of the
operating system. One can envision subscription ser-
vices where privacy filesystems can be mounted over
network file storage, or network privacy proxies that
scrub traffic on the fly.

• Gray box: Finally, we anticipate a scenario where
virtual machines can be used to implement privacy
services. This scenario is analogous to the use of
middleware in other application domains.

2.3 What can we scrub?

Having argued about the benefits of privacy as an oper-
ating system service, the question becomes: what infor-
mation can be scrubbed? Information scrubbing can be
applied to three types of data: Meta-data, para-data3 and
“regular” data. Meta-data is a set of data that describes
information about other data. For example, information
that is visible to the operating system, such as file permis-
sion and access times. Para-data is a layer of data that the
relevant tools need to understand application-specific pa-
rameters. For example, in order to remove superfluous in-
formation from Word documents, a scrubber utility would
need to be able to parse the specific format. The prob-
lem is further exacerbated by having to support legacy and
proprietary data formats.

• Meta-data: Removing meta-data, depending on the
underlying technology, can be a straightforward op-
eration. For example, copying a file generally does
not replicate most meta-data in the new copy. There
are, of course, exceptions, as is the case with the data
aware cp command on HFS+ on Mac OS X.

• Para-data: This type of data typically requires labor-
intensive scrubbing, primarily due to the fact that
the removal tools need to understand application-
specific parameters. For example, in order to remove
superfluous information from Word documents (such
as the author’s username), a scrubber utility needs to
parse the specific file format. The problem if further
exacerbated by the need to support legacy and pro-
prietary formats.

• Data: Implementing privacy scrubbing on raw data
is a tricky proposition. In some ways, it is the most
effective mechanism in the privacy-scrubbing arse-
nal, since it can remove delicate information such as
names and social security numbers (SSN) according
to some policy. Unfortunately, this flexibility car-
ries a hefty price tag. First, data scrubbing would
need to deal directly with a variety of application
formats. Second, great care must be placed in the in-
teraction with other applications that depend on the
integrity of the data. For example, one would need
to be careful with internal file checksums, and appli-
cations such as Tripwire and virus scanners.

3John Ioannidis suggested the term “para-data.”

3

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 47



2.4 Using Privacy Policies
Given the subjective nature of privacy, the use of policy
becomes a requisite. The success of projects like Plat-
form for Privacy Preferences (P3P) for the web [9] has set
the standard for privacy policy. Can something similar be
established for operating system policy? What are the pa-
rameters that need to be addressed for operating systems?
Can privacy policies be used for trust negotiation?

2.5 Trust Negotiation
In automated trust negotiation [17], participants specify
access-control policies for the disclosure of credentials.
The negotiation phase consists of a sequence of exchanges
that are controlled by the access-control policies defined
for the credentials. At each round, parties gain higher lev-
els of mutual trust, permitting access-control policies for
more sensitive credentials to be satisfied, which in turn
enable these credentials to be exchanged. A similar ap-
proach can be applied to a privacy service, that is, partic-
ipants can follow a series of rounds of releasing private
information.

3 Discussion
Users are becoming aware, albeit slowly, of the privacy
implications associated with the generation of copious
amounts of data in their systems. A study by Garfinkel
[12] shows that some users actually attempted to sanitize
their discarded disk drives by formatting them. Of course,
the current set of utilities (fdisk, format, newfs, delete,
etc.) do not remove the data effectively [7], but this is
an auspicious sign nonetheless. Another good indicator
that things are heading in the right direction, is the effort
to make cryptographic filesystems and secure erasing the
default option, as is the case for Mac OS X.

3.1 When Crypto is not Enough
Users primarily rely on two approaches to meet their data
privacy requirements. The first one is to encrypt their
data by using some application or an encrypting filesys-
tem (or device driver) [8, 10]. While this protects their
data from being divulged, it does not fully protect their
privacy. Admittedly, encrypted data leak almost zero in-
formation. However, encrypted data are of little use to
users; they require to be decrypted to actually be useful

(barring specific operations that can be performed to en-
crypted data [5]). Furthermore, during exchanges of in-
formation, the consumer of the data will eventually get
them in the clear. It is therefore of paramount importance
that data is scrubbed properly, and according to policy.

An alternative mechanism towards privacy assurance is
explicit manual scrubbing of sensitive information [3]. A
simple web search looking for such scrubbing tools re-
veals a large number of applications primarily designed to
delete specific files from users’ computers. Files include
temporary Internet files, cookies, web browsing history,
free space sanitizing, etc. While such tools are useful,
their scope is limited. The advent of intelligent file sys-
tems that hold extensive meta-data, and the presence of
files that contain both data and para-data, render existing
tools and mechanisms obsolete.

3.2 What About Privacy-Preserving Oper-
ations?

Lately, there has been extensive research interest in the
areas of anonymity, privacy-preserving data-mining, pri-
vate queries, privacy-preserving set operations, etc. [19,
11, 13, 15]. While the proposal of our work targets the
“systems” aspects of privacy (namely, how to architect
systems to provide privacy for the average user) there are
a lot of lessons to be learned from this theoretical work.

The primary benefit of that work is the cryptographic
tools that we can use in an OS-supplied privacy service.
We may be able to combine these tools with scrubbing to
offer stronger privacy guarantees in the cases where we
cannot completely eliminate sensitive data.

3.3 Policy and Mechanism
To be effective, solutions like the ones proposed in Section
2 must be accompanied with a powerful way of specifying
the appropriate privacy policies. In the previous section,
we focused our attention on the mechanisms for achieving
privacy as an OS service, and outlined the possibilities of
such an approach.

There are multiple opportunities and choices in this do-
main. From a user perspective, this should be the only
point of interaction with the privacy services; the actual
operation of the privacy service must be transparent. To-
wards this goal, there are several steps we can take. First,
the operating system privacy module should be precon-
figured as “privacy maintaining” by default. For exam-

4

HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association48



ple, it should generate warnings, or automatically scrub,
email messages when the user attaches files that contain
private information. Second, it must have default poli-
cies on what constitutes private data, like SSNs, phone
numbers, birth dates, etc. Third, it should clean up auto-
matically generated information, like meta-data inserted
in HTML pages by web editing tools.

Ideally, the operating system will export a privacy
management interface similar to the one found in web
browsers [2]. Through this interface, users would be pre-
sented with basic privacy options and the ability to use
third-party plugins for specific applications.

4 Conclusions and Future Work
We have made the case for privacy as an operating sys-
tem service. While more traditional approaches, such as
scrubbing utilities and cryptographic folders, offer some
privacy guarantees, they do not address the problem in a
comprehensive manner. We believe that the operating sys-
tem (kernel and system libraries) presents the ideal place
for the deployment of privacy mechanisms that can be
then utilized by a plethora of applications.

We have presented an initial description of how such
privacy services would work and interface with user ap-
plications, as well as a discussion on defining privacy se-
curity policies that apply to user data. This work only
scratches the surface of the privacy-as-service problem,
leaving a lot of possible directions for investigation. For
example, we still need to answer questions on efficiency,
user interfaces, application interfaces, which we hope to
investigate in the future.

References
[1] Mac OS X. http://www.apple.com/macosx.

[2] The Mozilla Project. http://www.mozilla.org/.

[3] Redacting with Confidence: How to Safely Pub-
lish Sanitized Reports Converted From Word to
PDF. http://www.fas.org/sgp/othergov/

dod/nsa-redact.pdf, December 2005.

[4] At&t leaks sensitive info in nsa suit. http:

//news.com.com/2100-1028 3-6077353.

html?part=rss\&tag=6077353\&subj=news,
May 2006.

[5] N. Ahituv, Y. Lapid, and S. Neumann. Process-
ing Encrypted Data. Communications of the ACM,
30(9):777–780, 1987.

[6] L. Badger, D. F. Sterne, D. L. Sherman, and K. M.
Walker. A domain and type enforcement UNIX pro-
totype. Computing Systems, 9(1):47–83, 1996.

[7] S. Bauer and N. B. Priyantha. Secure Data Dele-
tion for Linux File Systems. In Proceedings of the
2001 USENIX Security Annual Technical Confer-
ence, 2001.

[8] M. Blaze. A Cryptographic File System for Unix.
In Proceedings of the 1st ACM Conference on
Computer and Communications Security, November
1993.

[9] L. F. Cranor. Web Privacy with P3P. O’Reilly Me-
dia, Inc., September 2002.

[10] R. C. Dowdeswell and J. Ioannidis. The Crypto-
Graphic Disk Driver. In Proceedings of USENIX An-
nual Technical Conference, FREENIX Track, pages
179–186. USENIX, June 2003.

[11] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Advances
in Cryptology - EUROCRYPT 2004, 2004.

[12] S. Garfinkel and A. Shelat. Remembrance of Data
Passed: A Study of Disk Sanitization Practices.
pages 17–27, January 2003.

[13] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fair-
play — A Secure Two-party Computation System.
In Proceedings of the Usenix Security Symposium,
August 2004.

[14] M. Nyanchama and S. L. Osborn. Modeling manda-
tory access control in role-based security systems.
In IFIP Workshop on Database Security, pages 129–
144, 1995.

[15] Rakesh Agrawal and Ramakrishnan Srikant.
Privacy-Preserving Data Mining. In Proceedings of
the ACM SIGMOD Conference on Management of
Data, pages 439–450. ACM Press, May 2000.

[16] L. Sweeney. Replacing Personally-Identifying In-
formation in Medical Records, the Scrub System.
In Journal of the American Medical Informatics As-
soc., pages 333–337. Cimino JJ, 1996.

5

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 49



[17] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated Trust Negotiation. In Proceedings of
DARPA Information Survuvability Conference and
Exposition, Volume I, IEEE Press, pages 88–102,
January 2000.

[18] W.Venema. TCP wrapper: Network monitoring, ac-
cess control, and booby traps. In Proceedings of the
3rd Usenix Security Symposium, September 1992.

[19] A. Yao. Protocols for secure computation. In Pro-
ceedings of the IEEE (FOGS)’82, 1982.

6

HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association50


