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Abstract

The system lifetime gains provided by the various power management techniques in embedded sensing systems are
a strong function of the active and sleep mode power consumption of the underlying hardware platform. However,
power consumption characteristics of hardware platforms exhibit high variability across different instances of the plat-
form, diverse ambient conditions, and over passage of time. The factors underlying this variability include increased
manufacturing variations and aging effects due to shrinking transistor geometries, and deployment of embedded de-
vices in extreme environments. Our experimental measurements show that large variability in sleep mode power is
already present in commonly used embedded processors, and technology trends suggest that the variability will grow
even more over time and affect active mode power as well. Such variability results in suboptimal lifetime and service
quality. We therefore argue for energy management approaches that learn and model the power characteristics of the
specific instance of the hardware platform, and adapt accordingly.

1 Introduction

Energy management methods in embedded systems rely
on knowledge of power consumption of the underly-
ing computing platform in various modes of operation.
These power specifications are usually derived from
the datasheets. Unfortunately, the microelectronic sub-
strate is increasingly plagued by variability, especially
in power consumption, both across multiple instances of
a system and in time over its usage life. As a result
the “datasheet power specifications” are heavily guard-
banded (e.g., see [12]) leaving much of the energy po-
tential or sensing quality untapped. The variability has
few major sources:

o Semiconductor manufacturing. Scaling of physical di-
mensions faster than the optical wavelengths or equip-
ment tolerances used in the semiconductor manufac-
turing line has led to increased process variability
[2, 5] which makes integrated circuit designs unpre-
dictable. Figure 1 [10] shows that the manufacturing
variability in sleep (or static) power and total power is
likely to grow over 500% and 100% respectively in the
next decade!.

e Environment. Ambient condition variability (e.g.,
voltage and temperature).

e Battery. Total energy capacity can vary for nominally
identical batteries.

e Aging.  Transistor aging (e.g., due to negative

IThe fact that sleep power variability is large and growing stems
from exponential dependence of leakage on most physical and envi-
ronmental parameters.
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Figure 1: ITRS projections of power variability

bias temperature instability [18]) can change system

power/performance over time.

e Vendor. Multi-sourcing of parts with identical spec-
ification from different vendors is common and can
cause significant variation.

Variability, thus far, has been largely addressed by
process, device and circuit designers with software de-
signers remaining isolated from it by a rigid hardware-
software interface. Recently there have been some ef-
forts at higher layers of abstraction. For instance, soft-
ware fault tolerance schemes have been used to address
voltage [17] or temperature variability [6]. Hardware
“signatures” are used to guide adaptation in quality-
sensitive multimedia applications in [14]. In the embed-
ded sensing context, [13, 8] propose sensor node deploy-
ment methodology based on the variability in leakage
power across different nodes.



Wireless embedded sensing systems employ a variety
of power management techniques to achieve system life-
time objectives [16]. A particularly common technique is
duty cycling [7] where the system is by default in a sleep
state but woken up periodically to attend to pending tasks
and events. Judicious choice of duty cycling parame-
ters depends also on the active and sleep mode power
consumption of the platform. Often the duty cycle ratio
(fraction of time the system is active) is extremely small
(<< 1%), so that the energy consumed by the platform
during the sleep state accounts for almost all (> 99%)
of the energy consumption. In such cases, the achiev-
able duty cycle ratio is primarily determined by the sleep
state power consumption of the platform. Limitations on
power management posed by sleep power, which is due
to the leakage in circuits, has also been recognized and
analyzed [11]. However, the impact of hardware vari-
ability on duty cycling or other power management tech-
niques has not been studied. Perhaps most closely re-
lated work is by researchers who have studied adaptive
duty cycling, although their focus has been on variations
in workload [1] or energy availability (as would be the
case in systems that rely on scavenging energy from the
environment).

We discuss measured power variability for off-the-
shelf embedded processors, and potential software ap-
proaches to handle variability in power management of
embedded sensing systems. In particular, we focus on in-
stance and temperature dependent sleep power variability
that already manifests in contemporary embedded pro-
cessors, and its impact on duty cycling.

2 Power Consumption Variability in
Modern Embedded Processors

We focus our discussion on the sleep mode power Py,
which, as noted earlier, is a primary platform characteris-
tic of interest in the low duty cycle ratio regime. Sleep or
static power, occurs due to transistor leakage. During the
active mode, additional switching power is consumed.

With shrinking geometries the ratio of sleep mode
power to active mode power has been increasing (as high
as 40% in chips fabricated using 65nm technology). This
is due to the inability to turn the devices “off” effectively
as device dimensions continue to shrink. Manufacturing
spread in transistor parameters can cause up to 20x vari-
ation in sleep mode power [3] in addition to substantial
variation with supply voltage, and temperature. Specif-
ically in context of wireless sensor platforms, which of-
ten use unregulated battery output as supply, and could
be deployed in extreme ambient conditions, the variation
in leakage power during its lifetime, due to temperature
and voltage variation may be substantial.

To understand sleep power variability in embedded
processors, we characterized the sleep power for Atmel’s
SAM3U microcontroller, which is based on ARM’s Cor-
tex M3 processor core. While we have been unable to
determine from available literature the precise technol-
ogy node the chip is fabricated in, indirect evidence as
well as the vintage suggests that it is most likely fabri-
cated in a 130 nm process. Cortex M3 is a good repre-
sentative of the current generation of low-end 32-bit em-
bedded processors, and is incorporated in many emerg-
ing embedded platforms. Our characterization effort had
two components: analytic modeling of sleep power as a
function of temperature, and experimental measurement
of sleep power as function of temperature across an en-
semble of several identical SAM3U-EK boards incorpo-
rating SAM3U in a LQFP144 package.

2.1 Analytical Modeling of Sleep Power

Static power has four main sources: (i) Sub-threshold
Leakage current that flows between source and drain of
a MOSFET for gate-to-source voltages below the thresh-
old, (ii) Gate Leakage current due to tunneling of carri-
ers through the gate oxide to the substrate, (iii) Reverse
Biased Junction Leakage current which flows from the
source/drain regions to the substrate through the reverse
biased p-n junctions due to band-to-band tunneling and
diffusion, and (iv) Gate Induced Drain Leakage current
due to band to band tunneling in the region of overlap be-
tween the gate and drain. At temperatures below 150°C,
only the first two components are large enough, and of
the two only sub-threshold leakage exhibits strong vari-
ability with temperature. Therefore, the sleep power can
be modeled as the following function of temperature (de-
rived from BSIM4 compact device model [4]):

Psleep = Vua (ATzeB/T + Igl)

where A and B are technology-dependent constants, I,
is the temperature-independent gate leakage current, and
T is the core temperature. We combine the sleep power
model with a model of the thermal dynamics of a pack-
aged chip [9]:

dT (1)
Cdr

where T (¢) and P(¢) are the core temperature and power
consumption of the chip at time 7, R and C are the thermal

resistance and capacitance of the chip package, and T,
dT (1)
dt

RC +T(t) —RP(t) = Tymp

is the ambient temperature. At steady state =0, so
that Tsteadyfstate = Lamb +RP(t)-

For the SAM3U in a LQFP144 package, the typical
values of R and C are 50°C/W and 4-5 J/°C respectively.

The nominal static power of SAM3U is 30 u'W. Nominal




active power when operating at 48 MHz while perform-
ing a Dhrystone benchmark is 80 mW. This indicates that
when sleep mode power measurements are performed,
the self-heating of the chip due to static power consump-
tion is negligible, and even in active mode, the tempera-
ture difference is ~6.5°C.

2.2 Experimental Measurements

Based on the preceding analysis, for sleep mode mea-
surements it is reasonable to assume that the static power
follows similar dependence on ambient temperature as
given by the previously derived expression for Pye,,. We
verify this assumption from our measurements and char-
acterize each instance of microcontroller based on the
above model. We wait four RC time constants to make
the measurements of leakage to ensure steady state.

Figure 2 shows that the variation in sleep power across
ten instances of SAM3U at room temperature is more
than 5x. We also measured active mode power, but as ex-
pected for this processor, which is in an older technology,
the variation is minimal (< 10%).

Figure 3 shows the variation in sleep power across ten
instances of SAM3U over a temperature range of 22—
60°C, which is representative of the temperatures that
embedded sensors deployed under unregulated and ex-
treme ambient conditions often face (e.g. in factories,
desert etc.). As expected, individual processor instances
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Figure 3: Variation in Py, with temperature
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Figure 4: Comparing measured vs. modeled variability
of sleep power with temperature. Only five of the ten
boards are shown for clarity.

exhibit large sleep power variations over the temperature
range. While change in sleep power for any individual
processor is monotonic, the magnitudes of variations are
different so that relative rankings of different processors
change over temperature.

We also fitted the experimental measurements to the
analytic model discussed earlier, using minimum mean
square error criterion. Figure 4 shows that the simple
model discussed earlier works well. We use these fitted
models for the discussion in next section.

3 Towards an Opportunistic
Software Stack for Sensing

As the discussion in the preceding section shows, signif-
icant variability in sleep power is already present in con-
temporary embedded processors. Duty cycling is par-
ticularly sensitive to variations in sleep power at low
duty cycling ratios. Variability implies that any pre-
deployment choice of duty cycle ratio that is selected to
ensure desired lifetime needs to be overly conservative,
and result in lower quality of sensing or lifetime.
Consider an application running on ATSAM3U that
periodically wakes up, samples a sensor, sends the re-
sult to a forwarding module (e.g. for storing, sending
to the network), and goes into sleep mode. We assume
that the sampling task will complete within 10 ms with
a 48 MHz clock in active mode. For the sake of clar-
ity, we also assume that the system and the forwarding
module take negligible time and power to complete their
operations. The performance requirement is a desired
lifetime of 20000 hours using two AA batteries (5400
mAh) operating at 1.8V. As shown in Figure 5, across
the five hardware samples and over temperature varia-
tion, the worst case duty-cycle to achieve the desired life-
time is approximately 0.43%, which results in a sleep du-
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Figure 5: Implication of Py, variability on duty cycling

ration of 2300 ms for every active period of 10 ms. The
best case duty-cycle is approximately 0.65%, which re-
sults in a sleep duration of 1500 ms and approximately
51% more sensor data being collected. It should be noted
that these results take only instance and temperature de-
pendent variation into account. In long running systems,
variation due to aging would also need to be modeled
and/or learned to find allowable duty cycling rates.

In order to maximize the sensing quality in the pres-
ence of such variation, an opportunistic sensing software
stack can help discover and adapt the application duty cy-
cle ratio to the sleep mode power variations across parts
and over time. The run-time system for the opportunis-
tic stack will have to keep track of changes in hardware
characteristics, and provide this information through in-
terfaces accessible to either the system or the applica-
tions. Figure 6 shows several different ways such an op-
portunistic stack may be organized; the scenarios shown
differ in how the sense-and-adapt functionality is split
between applications and the operating system. Scenario
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Figure 6: Designing a software stack for variability-
aware duty cycling
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1 relies on application polling the hardware for its cur-
rent “signature” while in the second scenario, application
handles variability events generated by the operating sys-
tem. In the last scenario, handling of variability is largely
offloaded to the operating system.

Using architecture similar to that of scenario 3 in
Figure 6, we have implemented a prototype variability-
aware duty cycling framework in TinyOS. Application
modules specify to the scheduler a range of acceptable
duty cycling ratios, and the scheduler selects the actual
duty cycling ratio based on run-time temperature mea-
surements and a stored temperature vs. sleep power map
that is learnt off-line for the specific processor instance.
While this approach is potentially less flexible than the
ones presented by scenarios 1 and 2, it simplifies appli-
cation development by abstracting the underlying com-
plexities of the variability signature model. Measure-
ments with ATSAM3U suggest an average of 1.8x im-
provement in duty cycle ratio (and thus in quality of
sensing) for a given lifetime target. Furthermore, projec-
tions presented in Figure 7, using sleep-to-active mode
power in future technologies available from IBM [15],
indicate as much as two orders of magnitude gains with
a variability-aware duty cycling approach as embedded
processors move to advanced technologies.
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Figure 7: Current and projected gains from variability-
aware duty-cycling management

As embedded components in more advanced technolo-
gies (65 nm and smaller) become commonplace and op-
erating voltages get reduced to near-threshold and sub-
threshold regimes for energy efficiency, the variations
will increase significantly [2] and also manifest in active
mode power and achievable speeds. The elasticity inher-
ent in sensor information processing algorithms may be
used to gracefully move in the fidelity-lifetime space as
platform speed, sleep power, and active power character-
istics vary across different instances and over time. For
instance, sensing applications such as video surveillance
lend themselves to adaptive media processing. From our
earlier work in [14], Figure 8 shows that quality-power
tradeoff (with dynamic voltage scaling) can differ sig-
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Figure 8: PSNR vs. active power for 1000 simulated
samples of H.264 encoder in 45nm technology.

nificantly for different hardware instances of a video en-
coder. This can be leveraged opportunistically for in-
stance dependent encoding configuration choice. Same
work shows that such instance or hardware signature
based adaptation can improve average PSNR by 3dB in
presence of performance variability.

4 Conclusions

In this paper, we have argued for an adaptable soft-
ware stack for embedded sensing that will opportunis-
tically adjust to variability while making use of the elas-
ticity inherent in sensor information processing, instead
of designing the software for a rigid and conservative
platform specification. Such software will make use
of measurements from variability monitors embedded in
the platform coupled with offline testing, characteriza-
tion, software-based inference and statistical modeling
to learn and predict the actual power-performance char-
acteristics of the hardware.

While we motivated the problem of power variability
and outlined a software-based solution approach in the
context of sleep power and duty cycling, both the prob-
lem and the solution approach have broader implications.
Static power will become more comparable in magnitude
to active power [15], which would require variability to
be handled not just in ultra-low duty cycle regime, but
also during regular operation. Moreover, using appro-
priate hardware monitoring mechanisms, battery as well
as aging induced variability can also be exposed to the
software layers.
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