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ABSTRACT

This paper investigates energy savings on mobile systems
in privacy-preserving computation offloading. Offloading
computation-intensive programs to servers can save en-
ergy but data must be protected for privacy concerns.
The protection schemes must guarantee operations per-
formed on the protected data remain meaningful and the
results are still acceptable. The protection cannot re-
quire excessive amounts of energy overhead. We propose
to adopt homomorphic encryption to protect data in im-
age retrieval before sending data to servers. We imple-
ment our method on a PDA and evaluates the retrieval
performance and energy savings.

1. INTRODUCTION

In recent years, mobile systems become primary plat-
forms for many users, but mobile systems have limited
energy. Offloading migrates computation from mobile
systems to servers and can extend the former’s battery
life [1, 2, 3, 4]. However, offloading creates challenges
about privacy because data are stored in servers and no
longer under users’ control. Previous studies [1, 2, 3, 4]
mostly focus on how to make decisions to offload and
save energy. Some studies consider how to protect pri-
vacy in data outsourcing [5]. However, none of them
considers energy consumption when protecting privacy
in computation offloading.

To ensure privacy, data must be properly protected
before being sent to a server. Steganography [6] and
encryption are two common data-hiding techniques.
Steganography hides data so that the server is unaware
of the existence of information. Ordinary encryption is
commonly used to transmit secret data, but it is inap-
plicable in offloading because data must be decrypted at
the server before performing computation. Researchers
propose homomorphic encryption [7, 8, 9] that allows
computation on encrypted data. These protection meth-
ods must pay different amounts of energy overhead to
protect privacy.

Image retrieval [10] finds images similar to a query
by extracting images’ features and comparing the fea-
tures. It is computation intensive and thus a good can-
didate for offloading to save energy. ImgSeek [11] and
Gabor filtering [12] are both approaches for image re-
trieval. Offloading image retrieval requires that images
be protected before they are sent to servers, and the op-
erations on protected images must be still meaningful.

In our previous work [13] we showed that ImgSeek can
find similar images that are protected by steganography.
However, ImgSeek is sensitive to orientation. In other
words, if objects in an image are rotated, ImgSeek often
fails to find similar images. In contrast, Gabor filtering
can be extended for orientation-invariant retrieval [12].
To protect data in Gabor retrieval, steganography is not
suitable any more. We use homomorphic encryption to
protect data in Gabor retrieval.

This paper proposes an approach to save energy by
offloading image retrieval with privacy protection. We
build an energy model for privacy-preserving compu-
tation offloading and examine how to protect privacy
in image retrieval without sacrificing retrieval accuracy.
We demonstrate that homomorphic encryption can be
adopted to protect data when offloading the Gabor fil-
tering retrieval algorithm. We evaluate retrieval perfor-
mance (i.e. accuracy) and energy consumption on an HP
PDA. Results show that our method can save different
amounts of energy with different degrees of protection.

2. RELATED WORK

Computation offloading has been widely studied. Sev-
eral studies determine whether to offload and what com-
putation to offload. Rong and Pedram [1] use stochastic
models to determine whether to offload. Wolski et al. [2]
and Hong et al. [3] decide whether to offload based on
network bandwidths. Li et al. [4] use cost graphs from
program analysis to decide which parts to offload. None
of them considers energy consumption for protecting pri-
vacy in computation offloading.

ImgSeek [11] is an image retrieval program that per-
forms two-dimensional Haar wavelet decompositions on
the images and then finds 60 coefficients with the largest
amplitude as features. Gabor filtering [12] extracts image
features at different scales and orientations to compare
similarities. The steps includes: (S1) applying Gabor
filters on an image with different scales and orientations
to obtain filtered images and then calculating the array
of magnitudes of every filtered image; and (52) generat-
ing features from the magnitudes of the filtered image at
every scale and orientation and comparing features.

Homomorphic encryption [7, 8, 9] allows computations
performed on data without decryption. Gentry [7] has
recently proved that it is possible to construct a fully
homomorphic encryption scheme, but the efficient homo-
morphic encryption is still a subject of current research.



Only some limited classes of homomorphisms such as ad-
ditive, multiplicative, and mixed-multiplicative [8] are
found in practice so far. The encryption in [9] supports
additive, multiplicative and mixed-multiplicative homo-
morphisms; similar values in plaintext become very dif-
ferent in ciphertext. It encrypts a number x with keys
p, q by picking a random integral r so that the en-
crypted value y = Encrypt(x) = (x +rp) mod N,
here N = pq. The decryption uses the key p to recover
x = Decrypt(y) = y mod p. This encryption is homo-
morphic only in the range of integers. Thus, non-integral
values must be converted integers to make the homomor-
phism hold.

This paper investigates energy conservation for pro-
tecting privacy in computation offloading. We adopt ho-
momorphic encryption to protect data for offloading a
Gabor retrieval program. Images are encrypted before
they are sent to a server. On the server, the retrieval
program never decrypts the data so privacy is ensured.

3. PRIVACY-PRESERVING
TION OFFLOADING

Computation offloading may save energy on mobile
systems. However, data must be protected before be-
ing sent to a server and results in energy overhead. In
this section, we first build an energy model for privacy-
preserving computation offloading and examine the prop-
erties of different image retrieval algorithms and protec-
tion methods. Then we propose an approach to save
energy by offloading image retrieval with data protected
by homomorphic encryption.

3.1 Energy Model

There are four options to run a program C' as shown
in Figure 1. We build the energy model for each option.
Table 1 shows some parameters; comp(.) and size(.) are
used to denote the amount of computations and the size
of transmitted data.

Figure 1 (a) shows the option of running the program
without offloading. The program C'is run on a mobile
system with input data D and generates a result R. The
total amount of energy consumption on the mobile sys-
tem is:
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Figure 1 (b) shows the option of offloading without
considering privacy. Data D and the program C' are of-
floaded to the server and then the result R is returned
to the mobile system. The total energy consumption in-
cludes idle energy when the server runs C' and the energy
for sending D and receiving R through network:
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Figure 1 (c) shows the option of privacy-preserving
offloading. Data D are protected as D’ by a method
P. To process protected data, some modifications to the
program may be required. Thus the program C’ is pos-
sibly different from C. D’ and C’ are offloaded to the
server. The result R’ is returned to the mobile system
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Figure 1: Four options to run a program. The
dashed blocks are offloaded.

Table 1: Parameters for offloading

P, | Computation power | U | Speed of mobile system

P, | Network power S | Speed of server

P, | Idle power B | Bandwidth of network

and then processed by the inverse protection P! obtain-
ing the result R. Energy is consumed for performing P
and P~!, keeping idle when the server runs C’, sending
D’ and receiving R':
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In a program, operations that require additions and
multiplications can be efficiently performed on encrypted
data and offloaded to a server. Other types of operations
may be less efficient on encrypted data and, hence, better
performed on unprotected data on the mobile system.
Figure 1 (d) shows the option of selective offloading with
privacy protection. Data D are protected as D’ by P.
The program includes two parts C; and Cs; only C is
offloaded. € is modified as C] and offloaded to the
server. The result R’ is returned to the mobile system
and then processed by P~! and O, for obtaining the
result R. The total energy is consumed for performing
P, P71 and Oy, keeping idle when the server runs C1,
sending D’ and receiving R’:
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3.2 Data Protection in Image Retrieval

Image retrieval is computationally intensive and can
benefit from offloading to save energy. To handle the
protected data, the image retrieval program may be mod-
ified; the modified program must provide acceptable re-
trieval performance compared with the original program
and unprotected data. Different retrieval algorithms may
need different protection schemes. We consider two re-
trieval algorithms: ImgSeek and Gabor filtering, and
two protection schemes: steganography and homomor-
phic encryption. Steganography uses a cover image to
disguise the secret image so that it is difficult to detect.
A simple and commonly used image steganographic tech-
nique is hiding images by replacing bits from the cover
image with bits from the secret image. Encryption trans-
forms plain data to make them unreadable. Steganog-
raphy is different from encryption: the former hides the



existence of data. In contrast, encryption makes the data
meaningless without the key. ImgSeek can be performed
on steganographic data as shown in [13], based on the
linear property of feature extraction. However, ImgSeek
assumes the images are with the same scales and orienta-
tions. Gabor filtering has better accuracy than ImgSeek
for searching similar images with rotated objects. When
using Gabor filtering, steganography is not suitable to
protect data any more, because the feature extraction
in Gabor does not show linear properties. Homomor-
phic encryption can be used in Gabor retrieval, because
Gabor filtering mostly performs additions and multipli-
cations on encrypted data.

3.3 Offloading Gabor Retrieval with Encryp-
tion
We adopt homomorphic encryption to protect data
when offloading the Gabor filtering retrieval.

3.3.1 Encryption and Offloading

Since the encryption and decryption are based on mod-
ular operations, we must ensure that both input and out-
put values do not wrap around the modular representa-
tion and this can be achieved by a large key N. A small
key N may generate the wrong decryption and substan-
tially degrade retrieval performance. Besides, the key
size is also important to security of encryption. A large
key needs more computation to break; thus it provides
better protection. However, a large key also means more
energy consumption for transmitting and computing a
larger amount of data.

After encryption, some modifications are required on
the Gabor filtering retrieval program. The encryption
preserves homomorphism only for integers and the coeffi-
cients of Gabor filters are not integers; we must represent
the coefficients to suitable approximated integers. This
is accomplished by quantizing a coefficient s to [Ks],
where [.] is the rounding function and K is a suitable
scaling factor. For example, 0.0127 can be approximated
as [1000 « 0.0127] = 13, if K = 1000. A larger K pro-
duces a more accurate approximation. Since all com-
putations are among integers, they can be computed in
the encrypted domain. After quantization, the approxi-
mated Gabor filters are used to convolve data. Since the
encryption expands all pixels into large integers, we must
define computations on large integers in the implementa-
tion. The modified retrieval program can be performed
on both original data and encrypted data, with possibly
different degrees of accuracy due to approximation.

The Gabor filtering retrieval program contains two
steps S1 and S2 as described in Section 2. Without en-
cryption, all computations can be offloaded to a server.
With encryption, not all of the computations can be of-
floaded. In the second step S2, there are operations such
as division and root square which are inefficient to be
performed on the encrypted data and thus we decide to
keep them on the mobile system running on unprotected
data. Our analysis in Section 4.3 shows that S1 requires
significantly more computation than S2 and offloading
S1 can save substantially amounts of energy.
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Figure 2: Three options to run Gabor filtering
retrieval program. (a) Running on the mobile
system without offloading; (b) Offloading without
encryption; and (c) Offloading with encryption.
Only the dashed blocks are offloaded to a server
and the others are run on the mobile system.

3.3.2  Energy Analysis

There are three options to run the Gabor retrieval pro-
gram. The first is directly running the entire program on
the mobile system without encryption nor offloading as
shown in Figure 2 (a). Its energy model is shown in
Equation (1). The mobile system consumes energy for
all computations of the retrieval program. The second
option shown in Figure 2 (b) offloads the entire program
to the server without data protection. Its energy model is
shown in Equation (2). Energy for running the retrieval
program is greatly reduced because the server is much
faster than the mobile system. Meanwhile, offloading
also causes extra energy for transmitting data. It may
save energy but lose privacy. The third option shown in
Figure 2 (c) considers data protection when offloading
the program. It first encrypts data and offloads them to-
gether with S1 to the server, then decrypts the returned
results and runs S2 to obtain the final retrieval results.
Its energy model is shown in Equation (4). In this option,
the protection leads to extra energy for encrypting and
decrypting data. Also the protection enlarges data size
transmitted through network and thus increases trans-
mission energy. This option may protect privacy and
save energy if the overhead can be compensated by the
energy savings from running the heavy computation on
the server

4. EXPERIMENTAL RESULTS

In this section, we evaluate privacy protection, re-
trieval accuracy, and energy consumption. The programs
are implemented in C'# and ported on an HP iPAQ PDA
as the mobile system; a computer with 2GHz CPU and
3GB memory works as the server. We connect a 0.25€2 re-
sistor to the PDA’s battery and use National Instruments
data acquisition card to read the voltages for measur-
ing the energy consumption. In our experiments, every
query image is transformed into 9 variations including:
(1) blocks of 4 pixels average, (2) graylevels, (3) blocks
of 4 pixels shuffled, (4) 45-degree clockwise rotation, (5)
90-degree clockwise rotation, (6) 180-degree rotation, (7)
motion blur, (8) zoom blur, and (9) adding noise. For a
query image, its 9 transformed images plus itself are re-
garded as its matched images and the retrieval programs
will search for these matched images in the collection.



4.1 Privacy Protection

There are generally three kinds of privacy attacks [8]:
(1) ciphertext-only attacks: the attacker has access only
to some ciphertexts; (2)known-plaintext attacks: the at-
tacker has access to some plaintext-ciphertext pairs; and
(3) chosen-plaintext or ciphertext attacks: the attacker
can choose the plaintext-ciphertext pairs. The difficulty
of the attacks decreases in the above sequence. In our
offloading solution, both encryption and decryption are
performed on mobile systems; the server can only ac-
cess the encrypted data. Thus the attacker can only
launch ciphertext-only attacks and they are the weakest
form of attacks. We may further weaken the attacks by
changing the keys in the encryption of different pixels.
The key size is also an important parameter for com-
putational security in cryptography. In our approach,
finding the secret p from N is as difficult as factoring .
The General Number Field Sieve algorithm (GNFS) [14]
is currently the best known method for factoring large
numbers. For a b-bit number NV, the computational com-
plexity is: O(exp((%b)% (logb)3)), which shows a larger
key always requires more computational complexity to
break and provides better security than a smaller key.

4.2 Retrieval Performance

We consider the following nine cases for comparison:
applying (1) ImgSeek, (2) original Gabor filtering, and
(3) modified Gabor filtering program on (a) original data,
(b) steganographic data, and (c) encrypted data respec-
tively. The retrieval performance is assessed in terms of
the commonly used recall defined in [10]: recall(L) = 3,
where L is the total number of returned images, X is the
number of matched images in the returned L images,
and Y is total number of matched images in the entire
collection. In our experiments, ¥ = 10. We return 20
images, so L =20. 0 < X <Y, thus 0 < recall <1 with
recall = 1 as the best performance. For every method,
we run the program on the server with 5 queries to search
in the collection of 10,000 images downloaded from the
Internet, and use the average recalls to evaluate the re-
trieval performance.

The scaling factor K and the size of key N both affect
the retrieval performance. The effect of K is shown in
Figure 3 (a). When K is 10, the recall is nearly zero. A
larger scaling factor K makes the approximation more
precise and the retrieval performance improves. After K
reaches 1000, the performance has negligible difference.
Figure 3 (b) shows the effect of key size. When N is very
small, the recall is low because most of decryptions are
incorrect due to the errors from modular operations. The
performance improves as the key size increases until N
reaches 64 bits and then the performance becomes almost
constant. We see K = 1000 and 64-bit N can provide
reasonable retrieval performance so they are used in the
following comparison of different methods.

Figure 4 shows the comparison of retrieval perfor-
mance from three methods on three types of input
data. The Gabor method shows better performance
than ImgSeek when searching in original image collec-
tion, where some images are rotated. When data are
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Figure 3: Retrieval performance with different
scaling factors (a) and different key sizes (b).
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Figure 4: Retrieval performance comparison in
different methods. A high bar indicates a better
retrieval performance.

protected by steganography, ImgSeek can obtain about
83% performance compared with searching original data,
but the recall is very low when data are encrypted. Orig-
inal Gabor method has better performance on searching
original data with recall about 0.91, but the performance
on steganographic data and encrypted data are unsat-
isfactory; thus; modifications are required. Compared
with the original one, the modified Gabor program pro-
vides performance close to searching unprotected data,
and greatly improves the performance on encrypted data
from about 0.10 to about 0.84 of the recall. Since the
modified Gabor method works well on both original data
and encrypted data, the same program can be offloaded
to a server regardless whether a user wants to protect pri-
vacy. The results suggest that different image retrieval
algorithms need different protection schemes. Steganog-
raphy is better for ImgSeek and encryption is better for
Gabor filtering.

4.3 Energy Consumption

We consider the following methods to compare energy
consumption. (A) The Gabor filtering program is run
directly on the PDA. This is the baseline for compari-
son; (B) The Gabor filtering program is offloaded to the
server without encryption; (C)-(G) protect data using
homomorphic encryption with different key sizes: (C)
64-bit, (D) 80-bit, (E) 96-bit, (F) 112-bit, and (G) 128-
bit. Since the computation is very slow on the PDA, we
reduce the image collection to 1000 images.

We first examine the energy consumption of running
the two steps S1 and S2 of Gabor filtering retrieval by
the method (A). According to our measurement, running
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Figure 5: Energy consumption in different of-
floading methods. For each method, four com-
ponents and the total energy are measured. All
energy is normalized to the method (A). A higher
bar indicates more energy consumption.

S1 consumes about 99.97% of the total energy consump-
tion; S2 consumes negligible amount of energy with only
about 0.03%. S1 dominates because it includes the con-
volutions between images and Gabor filters with much
more computations than S2. Thus, S1 is should be of-
floaded to a server; S2 can be run either on the mobile
system or on the server.

Next we compare the energy consumption in different
offloading methods. Figure 5 shows the total energy and
the following four energy components in every offload-
ing method: (1) run S1; (2) run S2; (3) send/receive
data; and (4) encrypt/decrypt data. Although running
S1 consumes much more energy by the method (A), its
energy consumption is greatly reduced when offloaded
to the server. Running S2 consumes negligible amounts
of energy no matter on the mobile system or on the
server. Both S1 and S2 consume less than 1.0% amount
of the total energy of method (A4). In direct offloading
(B), it consumes additional energy for sending and re-
ceiving data, only about 1.1% of the energy of (A). In
the privacy-preserving offloading methods (C)-(G), data
are protected before they are offloaded. The protection
causes extra energy for encrypting and decrypting data;
they account for the most part of total energy consump-
tion on the mobile system. As the key size increases,
more computations are required to encrypt and decrypt
data. This part of energy increases from about 14.6% in
(C) to 27.6% in (G). The protection also expands in-
put data for transmission. Data size increases as the key
size so the amount of energy for transmission through
network is raised from 3.7% in (C) to 6.6% in (G).

We compare the total energy consumption in differ-
ent offloading methods. Energy consumption of all these
methods is less than 100% of (A4); (B)-(G) all save en-
ergy from offloading. (B) consumes the least amount of
energy at about 1.42% of (A), but it does not protect
privacy. (C)-(G) consume more energy than (B) due
to the overhead of data protection. The method based
on a larger key size always results in more energy con-
sumption. As the key size increases, the total amount of
energy consumption increases from about 18.7% in (C)
to about 35.9% in (G).

5. CONCLUSION

We present a method to offload image retrieval to save
energy with privacy protection. The data are protected
by homomorphic encryption and the computation is of-
floaded to a server. We implement our method on a PDA
and compare retrieval performance and energy consump-
tion. Results show that our method can obtain close
performance compared with the direct retrieval without
offloading and save energy to different degrees by choos-
ing different key sizes in the encryption.
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