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Abstract

This paper proposes a chaotic time series model of server system-
wide energy consumption to capture the dynamics present in ob-
served sensor readings of underlying physical systems. Based on
the chaotic model, we have developed a real-time predictor that es-
timates actual server energy consumption according to its overall
thermal envelope. This chaotic time series regression model relates
processor power, bus activity, and system ambient temperatures for
real-time prediction of power consumption during job execution to
enable run-time control of their thermal impacts. An experimental
case study compares our Chaotic Attractor Predictor (CAP) against
previous prediction models constructed according to other statisti-
cal methods. Our CAP is found to be accurate within an average
error of 2% (or 7%) and the worst case error of 7% (or 20%) for the
AMD Opteron processor (or for the Intel Nehalem processor), based
on executing a set of SPEC CPU2006 benchmarks.

1 Introduction

Pro-active techniques for thermal management minimize
server energy consumption by adjusting the allocation of
thread groups in a server to available cores so as to con-
sume the least amount of energy by all thread groups. High-
performance computing workloads result in the server be-
ing fully utilized with little resources available for reactive
scheduling. Effective adjustment of the resource allocation
depends upon predicting changes in temperature with reason-
able accuracy, given fluctuations in the system workload. The
interactions among many subsystems within a server blade
require the use of full-system models that consider the ther-
mal load of all components in a system. Thus, it is critical
to quantitatively understand the relationship among thermal
load, system utilization, and power consumption at the sys-
tem level so as to best optimize the scheduling of workloads.
Time series models operate by observing past outcomes of
a physical phenomenon so as to anticipate future values of
that phenomenon; such models are concerned more with the
behavior of a phenomenon than with how or why the phe-
nomenon changes. Many time series-based models of pro-
cessor energy consumption have been proposed [1] [2] [3];
recent work extends such models into the thermal domain
[4]. However, energy consumption, ambient temperature, and
processor die temperatures in servers can be affected by more
than just past values of those measurements made in isola-
tion from each other. Taking these interactions into account
requires the application of multivariate time series.
Multivariate time series are typically handled in three
broad classes of mechanisms: auto-regressive, integrated,
and moving average models [S]. Each of these classes as-
sumes a linear relationship between the dependent variable(s)
and previous data points. However, we show through our

analysis of experimental measurements of key processor met-
rics (i.e., sensor readings) that the assumption of linearity
does not apply in all cases. Furthermore, our analysis in-
dicates that the non-linear behavior of these series is chaotic
in nature. It thus leads to our development of a Chaotic At-
tractor Predictor (CAP).

In summary, the contributions of this work are three-fold.
(1) We show, by analyzing measurements from two different
server systems, that server energy consumption exhibits non-
linear time series possessing chaotic behavior, (2) we con-
struct a model of server energy consumption using a tech-
nique for analyzing chaotic time series of sensor measure-
ments during job execution, (3) we use measurements of
server energy consumption on two different server systems
to compare the performance of our model against those based
on linear regression and auto-regressive techniques.

2 Background and Prior Work

An analytical model of server energy consumption was built
earlier [6] by modeling energy consumption as a function of
the work done by the system in executing its computational
tasks and of residual thermal energy given off by the system
in doing that work. The resulting dynamic system consumes
energy expressed in the time domain as follows:
dPsystem
dt
= f(Eprocy Emem, Fem, Evoard, Fhdd) (€]

where each of the terms in the above equation is defined as:
(1) E}poc: energy consumed in the processor due to compu-
tations, (2) E,em: energy consumed in the DDR SDRAM
chips, (3) E.,,: energy taken by the electromechanical com-
ponents in the system, (4) Epoqrq: €nergy consumed by pe-
ripherals that support the operation of the board, and (5)
Enhqq: energy consumed by the hard disk drive during the
system’s operation.

We can approximate an energy consumption solution for
this system by considering (1) an initial energy state Esystem
attime ¢t = 0 and (2) a set of physical predictors that approx-
imate the values of Eproc, Emem, Eboard, and Ejpqq at the
next interval £ + At¢. The result is a time series

Esystem =

e-sys = f(e_procs, e-memy, e_emy, e_boards, e_hdd)  (2)

where each of quantities e corresponds to one or more phys-

ically observable predictors of the quantities in Eq. (1). The
function f captures the method used to combine the physi-
cal observations into e_sys. We place two key requirements
upon f : (1) it must quickly compute estimates to be suitable
for real-time prediction of energy and temperature changes,
and (2) it must approximate the behavior of the original func-
tion f to an acceptable accuracy. Our problem now becomes
what shall we use in our predictor to implement the f func-
tion?



A common approach for selecting predictors is to apply a
linear auto-regressive (AR) combination of CPU utilization,
disk-utilization, and hardware performance counters as esti-
mators for the quantities in Eq. (2). Linear regressions model
the relationship between one or more variables, such that the
model depends linearly on unknown parameters to be esti-
mated from a set of data. An excellent summary of models
of this type can be found in [1], with recent representative
examples described in [6], [2], and [3].

Other global auto-regressive techniques have been pro-
posed for both energy and thermal modeling. For example,
Coskun et al. [4] proposed the use of an Auto-Regressive
Moving Average (ARMA) technique as a means to model
changes in temperature as part of a thermally aware process
scheduler. An ARMA predictor makes estimates of future
values of a system by using past values. The ARMA model
assumes that the process is a stationary stochastic process.
In a stationary process, the probability distribution does not
change with time. As a result, neither the mean nor the vari-
ance will change over time. ARMA predictors are not suited
for data that exhibits sudden bursts of a large amplitude at
irregular time epochs due to their underlying assumptions
of normality [7]. This issue can be addressed by corrective
mechanisms that adapt the predictor to the workload-related
changes in a dynamic system. For example, Coskun et al. [4]
addressed this issue by including a machine-learning based
corrector that monitored workload changes and adjusted the
parameters of their ARMA model.

Another approach to dealing with this problem is the use
of an adaptive nonparametric regression scheme based upon
partitioning the underlying time series. Multivariate Adaptive
Regression Splines (MARS), introduced by Friedman [8], is
an adaptive procedure that addresses non-linearity by fitting
a weighted sum of basis functions to the data set, with the
basis functions in three possible forms: (1) a constant value
of 1 that represents the intercept term of the regression, (2) a
hinge function of the form maz(0,z — ¢) or max(0,c — x)
that represents knots in the regression, or (3) a product of two
or more hinge functions that model interactions between two
or more variables. The selection of weights and hinge con-
stants is performed by a two-pass algorithm, with its forward
pass adding basis functions to the regression in an attempt to
reduce the mean square error while attempting to improve the
model in its backwards pass by removing terms based upon
cross validation.

3 Linear Regression: AR and MARS

A set of experiments was carried out to evaluate the perfor-
mance of power models built using AR and MARS tech-
niques to approximate a solution for dynamic systems fol-
lowing Eq. (1). Observable predictors of system activity were
chosen for each of the quantities in Eq. (2) under two test sys-
tems: (1) an Oracle/Sun x2200 (AMD Opteron) server and
(2) a Dell PowerEdge R610 (Intel Xeon X5300 Nehalem)
server. AR and MARS models for Eq. (2) were created
from data collected by executing a set of high-performance
computing benchmarks from the SPEC CPU2006 benchmark

suite: bzip2, cactusadm, gromac, leslie3d, omnetpp, and perl-
bench [9]. These models were then used as a predictive tool
for another set of CPU2006 benchmarks (astar, gobmk, cal-
culix, and zeusmp) as a means of evaluating the predictive
performance of each model.

The results under these linear regression techniques (AR
and MARS) are summarized in Tables 1 and 2. All three
techniques predict well over the long term, with an aver-
age error ranging between 1.7% and 3.1% depending upon
method and benchmark. However, they suffer from poor per-
formance in the short term, with maximum errors ranging
from 7.9% to 9.3% for the AMD Opteron server and in the
range of 15% and 44% for the Intel Nehalem server. An anal-
ysis of the power traces for the different benchmarks reveals
hints of this behavior. Consider the power trace shown in
Fig. 1 for the SPEC CPU2006 zeusmp benchmark executed
on an AMD Opteron server. We saw indications of (1) peri-
odic behavior throughout the length of the run and (2) large
swings in the power draw though the course of the benchmark
run. Similar behavior was observed for other benchmarks on
both server systems. Thus, it is reasonably conjectured that
non-linear dynamics exist in the two test systems. Further-
more, the behavior of the power draw is such that the linear
regression-based predictors will occasionally mis-predict by
large amounts (up to 44%, as indicated in Table 2). The phys-
ical behavior of the system uncovers that such large swings
in power draw cannot be completely attributed to noise and,
as result, we must account for them within our model.
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Fig. 1: Power trace for zeusmp on AMD Opteron.

4 Chaotic Behavior

We performed an analysis on the data collected from our test
systems to determine if the behavior of our time series can be
attributed to a certain form of chaotic behavior. A chaotic
process is one which is highly sensitive to a set of initial
conditions. Small differences in those initial conditions yield
widely diverging outcomes in such chaotic systems. In order
to determine whether a process is chaotic, we must be able
to show that it demonstrates high sensitivity to initial condi-
tions, topological mixing, and an indication that its periodic
orbits are dense [10]. After analyzing our experimental data,
we believe that the power consumption of a server demon-
strates chaotic behavior, as detailed next.

In order to evaluate a server’s sensitivity to initial condi-
tions, we consider the Lyapunov exponents of the time series
data observed while running those benchmarks described in
the previous section. The Lyapunov exponent quantifies the
sensitivity of a system such that a positive Lyapunov expo-
nent indicates that the system is chaotic [10]. The average



Table 1: Model errors for AR, MARS, and CAP on AMD Opteron server

AR MARS CAP (withn = 5, p = 200, r = 16)
Avg Max RMSE| Avg Max RMSE| Avg Max RMSE
Benchmark | Err % Err % Err % Err % Err % Err %
astar 31% 89% 2.26 25% 93% 2.12 09% 5.5% 0.72
games 22% 9.3% 2.06 30% 9.7% 2.44 1.0% 6.8% 2.06
gobmk 1.7% 9.0% 2.30 30% 9.1% 2.36 1.6% 5.9% 2.30
zeusmp 28% 8.1% 2.14 28% 19% 2.34 1.0% 5.6% 2.14
Table 2: Model errors for AR, MARS, and CAP on Intel Nehalem server
AR MARS CAP (withn = 5, p = 200, r = 18)
Avg Max RMSE| Avg Max RMSE| Avg Max RMSE
Benchmark | Err % Err % Err % Err % Err % Err %
astar 59% 28.5% 4.94 54% 28.0% 4.97 1.1% 20.8% 1.83
games 5.6% 443% 5.54 47% 33.0% 4.58 1.0% 14.8% 1.54
gobmk 53% 27.8% 4.83 41% 27.9% 4.73 1.0% 21.5% 2.13
zeusmp 77% 31.8% 724 | 11.6% 322% 891 3.3% 20.6% 3.31

Lyapunov exponent can be cajlvculated using:
—1
A= lim > il (X)),

We found a positive Lyapunnc;\? exponent when performing
this calculation on our data set ranging from 0.01 to 0.28 (or
0.03 to 0.35) on the AMD (or Intel) test server, as listed in
Table 3, where each pair indicates the parameter value of the
AMD server followed by that of the Intel server. Therefore,
our data has met the first and the most significant criterion to
qualify as a chaotic process.

The second indication of the chaotic behavior of the time
series in Eq. (2) is an estimate of the Hurst parameter H for
the data sets collected in each benchmark. A real number in
the range of (0, 1), the Hurst parameter is in the exponents of
the covariance equation for Fractional Brown motion (fBm)
[10]. If the value of the Hurst parameter is greater than 0.5, an
increment in the random process is positively correlated and
long range dependence exists in the case of time series. In
a chaotic system, a value of H approaching 1.0 indicates the
presence of self-similarity in the system. As demonstrated in
Table 3, the time series data collected in our experiments all
have values of H close to 1.0, ranging from 0.93 to 0.98 (or
0.93 to 0.97) on the AMD (or Intel) test server.

Table 3: Indications of chaotic behavior in power time series (AMD,
Intel)

Benchmark Hurst Average
Parameter  Lyapunov

(H) Exponent
bzip2 (0.96,0.93) (0.28, 0.35)
cactusadm | (0.95,0.97) (0.01, 0.04)
gromac 0.94,0.95) (0.02,0.03)
leslie3d |(0.93,0.94) (0.05,0.11)
omnetpp |(0.96,0.97) (0.05, 0.06)
perlbench |(0.98,0.95) (0.06, 0.04)

5 Predicting from Chaos

From a predictive standpoint, the unpredictable deterministic
behavior of chaotic time series means that it is difficult to
build a predictor that takes a global parametric view of the
data in the series. However, it is possible to generate a highly
accurate short-term prediction by reconstructing the attractor
in the phase space of the time series and applying a certain
form of least square prediction to the resulting vector space
[11].

5.1 Chaotic Predictor: CAP

Given the time series introduced in Eq. (2), we define X} to
be the value of e,y sterm at time ¢, and 7 to be the total num-
ber of sensors and OS measures to provide metric readings.
According to Taken’s Delay Embedding Theorem [10], there
exists a function f (X;) whose behavior in the phase space re-
flects the behavior of the attractors in the original time series.
Our problem now becomes finding a means to approximate
f

We introduce the concept of a Chaotic Attractor Predictor
(CAP) that defines f in terms of linear least squares regres-
sion of a multivariate local polynomial of degree r. Multi-
variate local linear regression is a common non-parametric
technique for time series approximations. With CAP, we ex-
tend this concept to predict the behavior of a chaotic time
series by following the approximation method proposed ear-
lier [11]. CAP is a predictor that exhibits the computational
advantages of polynomial time complexity while capturing
the dynamics of test systems.

Let = be an observation (involving r metric readings) at
some future time ¢ + At and X, be a prior observation (in-
volving r metric readings) at time u foru =t —1,...,t —p.
For CAP, we use the standard d-variate normal density func-
tion, with ||z|| being the norm of vector x:

K(z) = (2m) % eap(—||]*/2)
as a tool to localize the neighborhood in which we define
our polynomial. We do this through kernel weighting with a
defined bandwidth matrix H for localization by assigning a
weight of K (x) = |H Y| K (H ~'x). This can be simplified



by taking the bandwidth matrix H = hl,., with h being a
scalar value and I, being the identity matrix of order r.

A local constant approximation for f is defined next in
terms of a locally weighted average [5] over the next n obser-

vations, based on the prior p observations of X;_q,..., X;_,
(each with r metric readings):
n+p
Z Op * Kp(Xi—1 — 1)
s t=p+1
f@) ==
Z KH(thl — ZE)
t=p+1
with O = (X;—1,..., X)L,

The process can be improved by defining a local linear ap-
proximation via applying a truncated Taylor series expansion
of f: R R ,

F(X) = f@) + [ (@) (X —=).

The coefficients of the polynomial f are then determined by
minimizing

n+p

S [Xe—a- "X - o))k Kn(Xe—2). )

t=p+1 .
with respect to a and b, which are estimators to f(x)
and f'(z), respectively. The predictor generated by solving
Eq. (3) can be+ explicitly written, according to [5], as
n+p

f@) =2 3 (sa—sur@—Xo1)*#Kn((@—Xo-1)/h) @)

n
t=p+1
n+p .
with s; = L > (2 = X;_1)' % Ky ((x — Xy—1)/h) for i
t=p+1
=1or2.

There are three steps involved in the process of establishing
a CAP predictor: (1) creating a training set for the process,
(2) using the observations from the training set to find the ap-
propriate delay embedding using Takens Theorem and then
apply the nearest neighbors algorithm in the embedded set
to identify the attractors, and (3) solving the resulting linear
least squares problem that arises from applying Eq. (3) to the
attractors using the function expressed by Eq. (4). The time
complexity of creating a predictor is governed by the third
step in the process. The task of reconstructing the state space
by delay embedding is linear in time as one must make up to
d passes through the observations, under the embedding di-
mension of d. Thus, the time required is O(dn), where n is
the number of next observations. Then, it becomes a matter
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Fig. 2: Actual power results versus predicted results for zeusmp Fig. 3: Actual power results versus predicted results for zeusmp

benchmark under MARS for AMD Opteron.

of applying a naive form of k-th nearest neighbors algorithm
to identify the points in the attractors. This step involves
finding the squared distance of all the points in the nearest
analogs in the Takens set and then sorting the result to deter-
mine the d-nearest neighbors. This step takes O(n logn+n).
We avoid the cost of computing the linear least squares solu-
tion in the third step by using the explicit expression given in
Eq. (4). The time complexity of computing this expression
can be shown to be O(nxn), with O(n) due to computing s;,
for i = 1 or 2. As a result, the time complexity for establish-
ing a CAP predictor equals O(n?). It should be noted that the
construction of a CAP predictor is done only once for a given
server, irrespective of applications executed on the server.

5.2 Evaluation and Results

We evaluated the predictive performance of CAP versus lin-
ear regression techniques by applying a local linear CAP to
the same collected data used in Section 3. The training set
(bzip2, cactusadm, gromac, leslie3d, omnetpp, perlbench [9])
for the model was created by taking the geometric mean of all
the time series involved in evaluating linear regression tech-
niques. Next, the process described in Section 5.1 was em-
ployed to determine the attractors of the resulting time se-
ries, followed by generating an approximating polynomial to
fit the attractor. The resulting predictor was applied to those
benchmarks (i.e., astar, gobmk, calculix, and zeusmp) used to
evaluate linear regression techniques. The results of this ex-
periment are summarized in Tables 1 and 2 under the column
“CAP”.

CAP predicts power changes in the long term with an av-
erage error in the range from 1.0% to 1.6% for the AMD
Opteron server and 1.4% to 4.2% for the Intel server. Max-
imum errors are far better under CAP than under its linear
regression counterparts, ranging from 5.5% to 6.8% only for
the AMD Opteron server, in contrast to as large as 9.7%
under MARS. Better prediction was observed similarly for
the Intel server, with the maximum error dropping to 21.5%
from 33.0% under MARS, accompanied by corresponding
improvement in the Root Mean Square Error (RMSE) for all
benchmarks. As expected, CAP provides a better fit overall
and at the start as well as the end of the series. This behav-
ior, as opposed to a regression spline technique like MARS,
results from better prediction of piecewise local polynomials

76 |

Actual
........ Predicted

74 L

72t

70

63

Power (watts!

66 |

B4

62 |

o 200 <00 600 s00 1000 1z00 1400 1600
Time {in sec.}

benchmark under CAP for AMD Opteron.



75 |

Actual
Predicted

Power (watts!

L L I L L
o soo 1000 1%00 2000 2z00
Time {in sec.}

Fig. 4: Actual power results versus predicted results for zeusmp Fig. 5: Actual power results versus predicted results for zeusmp

benchmark under MARS for Intel Nehalem.
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Fig. 6: CAP error rates versus time for three other benchmarks.

versus the regression spline being global in nature. A de-
tailed comparison between MARS and CAP predictors for
the AMD server can be seen in Fig. 2 and Fig. 3, where
n = 5, p = 200 and r = 16. CAP exhibits far smaller
difference between actual and predicted power consumption
amounts under the CPU2006 zeusmp benchmark. Likewise,
a contrast between MARS and CAP predictors for the Intel
server under the zeusmp benchmark is demonstrated in Fig. 4
and Fig. 5, where n = 5, p = 200 and » = 18. Fig. 6 illus-
trates the error rates for the other three evaluated benchmarks
over their execution intervals. Those benchmarks exhibit
similar behavior to what is seen under the zeusmp bench-
mark, shown in Figs. 2-5.

6 Conclusion

In this paper, we have shown that models constructed from
global auto-regressive methods, such as AR, ARMA, and
MARS, demonstrate behavior that makes them problem-
atic for predicting server energy consumption. The pro-
posed CAP overcomes the limitations of the previous linear
regression-based methods by addressing the non-linear as-
pects of the time series data while capturing the underlying
chaotic behavior of the dynamic physical system. CAP in-
volves O(n log n) time complexity and requires no additional
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benchmark under CAP for Intel Nehalem.

hardware beyond those made available in recent processors,
nor any tool outside those provided by operating systems. As

aresult, CAP can support high-performance and real-time ap-
plication workloads, readily applicable for run-time energy

consumption prediction.
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