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Abstract

This paper proposes to develop a system-wide energy consumption
model for servers by making use of hardware performance coun-
ters and experimental measurements. We develop a real-time en-
ergy prediction model that relates server energy consumption to its
overall thermal envelope. While previous studies have attempted
system-wide modeling of server power consumption through sub-
system models, our approach is different in that it uses a small
set of tightly correlated parameters to create a model relating sys-
tem energy input to subsystem energy consumption. We develop
a linear regression model that relates processor power, bus activ-
ity, and system ambient temperatures into real-time predictions of
the power consumption of long jobs and as result controlling their
thermal impact. Using the HyperTransport bus model as a case
study and through electrical measurements on example server sub-
systems, we develop a statistical model for estimating run-time
power consumption. Our model is accurate within an error of four
percent(4%) as verified using a set of common processor bench-
marks.

1 Introduction
The upwardly spiraling operating costs of the infrastruc-
ture for enterprise-scale computing demand efficient power
management in server environments. This is difficult to
achieve in practice as a data center usually over-provisions
its power capacity to address worst case scenarios. This
often results in either waste of considerable power budget
or severe under-utilization of capacity. Thus, it is critical
to quantitatively understand the relationship between power
consumption and thermal load at the system level so as to
optimize the use of deployed power capacity in the data cen-
ter.

This paper introduces a statistical model that provides
run-time system-wide prediction of energy consumption on
server blades. The model takes into account key thermal
and system parameters such as ambient temperatures, die
temperatures, and hardware performance counters as met-
rics for system energy consumption within a given power
and thermal envelope.

A hardware performance counter (PeC) based relation-
ship between server blade power consumption and the con-
sequent thermal envelope is necessary to dynamically con-
trol the thermal footprint of large workloads. We con-
struct a model for run-time system power estimation that

dynamically correlates system-bus traffic with task activ-
ities, memory-access metrics and board-level power mea-
surements. This work demonstrates that appropriate provi-
sion of additional PeCs beyond what are provided by a typi-
cal processor is required to obtain more accurate prediction
of system-wide energy consumption.

Using the HyperTransport [1] bus model as a case study
and through electrical measurements on an example server
architecture, we develop our model to estimate run-time
power consumption. Scheduler-based mechanisms are be-
ing developed to take advantage of this estimation model
when dispatching jobs to confine server power consumption
within a given power budget and thermal envelope while
minimizing impact upon server performance. Their results
will be reported separately at a later time.

2 Related Work
Power management techniques developed for mobile and
desktop computers have been applied with some success
to managing the power consumption of microprocessors
used in server hardware. The current generation of Intel
and AMD processors use different techniques for processor-
level power management including (1) per core clock gat-
ing, (2) multiple clock domains, (3) multiple voltage do-
mains for cores, caches, and memory, (4) dynamic voltage
and frequency scaling per core and processor, and (5) hard-
ware support for virtualization techniques. In general, these
techniques take advantage of the fact that application perfor-
mance can be adjusted to utilize idle time on the processor
for energy savings [2]

Extensive study has focused on limiting the power con-
sumption of storage devices and main memory as these de-
vices are the greatest energy consumers in the system af-
ter the processor. However, these approaches optimize only
one part of the system. This is problematic because the sys-
tem components interact with each other and focusing on
just one piece of the energy consumption model may not
be optimal from the complete system standpoint. An effec-
tive power model must take into account the impact of these
interactions.

Processor power consumption is often modeled by the
correlation of power consumption to phases of application
execution using system-level metrics. The approaches used
to define this mapping fall into two categories: determin-
ing the application phase from either the control flow of the



application or performance counter signatures of the exe-
cuted instructions or operating system metrics [2][3][4][5].
Attempts have been made to reconcile these approaches by
mapping programs phases to events [6]. The most common
technique used to associate PeCs and/or operating systems
metrics to energy consumption use linear regression models
to map the collected metrics to the energy consumed during
the execution of a program [2][5][7].

The power model must also take thermal issues into ac-
count. Management of thermal issues is complicated by the
existence of multiple cores per processor. Recent advances
in processor design permit thermal management to occur on
a per core and per processor basis. An analysis of the impact
of multi-core processors can be found in [8].

3 The Model
Our model considers a single server blade as a closed black-
box system. The black-box system model lets us converge
upon an upper bound of the thermal, energy, and power en-
velopes of the system. We develop our model by measuring
the energy input into the system as a function of the work
done by the system in executing its computational tasks and
residual thermal energy given off by the system in doing that
work. It is important to note that we are trying to establish
an energy relationship between the workload and the overall
thermodynamics of the system.

We begin by considering the power supplied into the
server at the output of the power supply unit. Having a
measure of this input power gives us a handle over the to-
tal current distribution across various voltage domains and
into the various sub-systems of the server. Current sensors
with readable counters at the outputs of the power supply
as performance counters would immensely aid in dynami-
cally tracking DC power drawn into the system that varies
according to the system load.

The DC power is delivered in the domains of +/-12 V,
+/-5V, and +/- 3.3V [9]. Most power supplies limit the total
power delivered through the 5V and 3.3V lines to about 20%
of the rated power supply (PR). Now assuming each of the
voltage lines vk(t) draws current ik(t), then each line draws
an instantaneous power of pk(t) = vk(t) · ik(t). If a voltage
domain has M DC lines as output, the board has N voltage
domains and the total power delivered into the system in
time interval t2 to t1 is:

Edc =
∫ t2

t1

N∑
j=0

Mj∑
k=0

vk(t) · ik(t)dt (1)

with the constraint on the 3.3V and 5V lines that maximum
power consumed is less that 0.2 × PR. Thus, in our 450W
rated system, the power delivered by the 3.3V and 5V lines
is capped at 90W.

This energy delivered to the system Edc = Esystem can
be expressed as a sum of energy component contributed
by the different sub-systems in the server blade. We de-
fine five energy consumption components within a system:

(1) Eproc: Energy consumed in the processor due to all
computations, (2) Emem: Energy consumed in the DDR
SDRAM chips, (3) Eem: Energy consumed by the elec-
tromechanical components in the server blade, (4) Eboard:
Energy consumed by peripherals that support the operation
of the board., and (5) Ehdd: Energy consumed by the hard
disk drive during the server’s operation. Note that Eem in-
cludes the fans and optical drives but Ehdd is separate as one
can dynamically compute the HDD’s power consumption.
Eboard includes all devices in the multiple voltage domains
across the board, including chipset chips, voltage regula-
tion, bus control chips, connectors, interface devices, and
etc. Mostly these are covered in the 3.3V and 5V domains.

3.1 Processor Energy Consumption
Our processor model aims to treat the processor as a
black box, whose energy consumption is a function of its
work load, and the work done manifests as the core die-
temperature and system ambient temperature (measured at
a system level by ipmitool through sensors in the path
of the outgoing airflow from the processor). A practical is-
sue with trying to estimate processor power using a large
number of PeCs is that there are only a limited number of
PeCs that tools like cpustat can track simultaneously.
In order to track the energy-thermal load relationship for
a job, we had to develop a model with the least number of
PeCs that would accurately reflect the energy consumption-
thermal load relationship.

Given the AMD Operton processor architecture con-
nected in a dual core configuration shown in Figure 1, we
consider traffic on the HyperTransport buses as representa-
tive of the processor work load and reflecting the amount
of data being processed by a processor or any of its cores.
The HT2 bus is non-coherent and connects one of the two
processors to the Southbridge (whereas the Northbridge is
inside the Opteron processor). Thus, traffic on the HT2 bus
reflects hard-disk and network traffic. The model therefore
scales when considering the effect of network traffic and
heavy disk I/O based jobs. HT1 is a coherent bus between
the two SMP processors and PeCs on that bus give an ac-
curate reflection on the processing load of cores executing
jobs. Per-core die temperature readings and, consequently,
ambient temperature per processor are thus greatly affected
by the number of transactions over the HT buses. We also
include L2 cache misses as one of our variables (to be ex-
plained in Section 3.2).

Thus the total processor power consumption to reflect the
thermal change due to workload can be expressed as:

Pproc = H ·X (2)

= [β0 · · ·β10]T · [V ar0 · · ·V ar10]T (3)

where X vector contains the following variables: ambient
temperatures and die temperatures for processors 0 and 1,
HT1 and HT2 transactions, and L2 cache misses per core.
The popularity of HyperTransport in server and high perfor-
mance computing platforms based on AMD, IBM, nVidia,
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Figure 1: Dual-core AMD Opteron based server architec-
ture.

Altera, and Cray processors makes the model applicable to
a wide variety of platforms.

3.2 DRAM Energy
Energy consumed by the DRAM banks can be computed
by a combination of measuring the counts of the high-
est level cache miss in the processor combined with the
DRAM Read/Write power along with the DRAM back-
ground power(activation power). As illustrated in [10],
DRAM background power and activation power can be ob-
tained from the DRAM datasheets. For a single DRAM in
our case, a total of 493mW would be consumed. However,
given the number of L2 cache misses per second when a job
is running on a certain core (over 22M / sec at the peak of
bzip2 SPEC2006 benchmark), a significant amount of heat
is generated from the DRAM chips. The thermal airflow
proximity of the DRAM banks to their respective proces-
sors makes it possible for us to combine the energy con-
sumption and the consequent thermal output of the memory
banks with the processor ambient temperature. This value
is reported by IPMI and we combine it into our regression
model.

3.3 Hard Disk Energy
The energy consumed by the hard disk while operating, can
be approximated to give an upper bound on the energy con-
sumption of the hard disk using a combination of perfor-
mance counters and drive ratings. In our server, Hitachi’s
7200 RPM, 250GB SATA hard disk [11] is used. We can
achieve a crude but simple model based on the typical power
consumption data of the hard disk and performance coun-
ters.

The utility iostat can be used to measure the num-
ber of read and writes per second to the disk as well as the
kilobytes read from and written to the disk. Based on this

performance counter, we can compute an approximate disk
power consumption Ehdd value as :

Ehdd = Pspin−up × tsu + Pread

∑
Nr × tr

+ Pwrite

∑
Nw × tw +

∑
Pidle × tidle (4)

where Pspin−up is the power required to spin-up the disk
from 0 to full rotation (≈ 5.25W max.). tsu is the time
required to achieve spin up (typically about 10s). Pidle is
typically 5W. Pread is the power consumed per kilobyte of
data read from the disk. Nr is the number of kilobytes of
data read in time-slice tr from the disk. Pread and Pwrite

can be computed to be approximately 13.3µW /Kbyte and
6.67µW /Kbyte.

3.4 Electromechanical Energy
The quantity Eem in our model takes into account the en-
ergy consumed by the cooling fans in the server as well
as the optical drives. In our case, no performance coun-
ters are available for the optical drive energy measurements
and they are obtained from measurements but could easily
be obtained using current sensors at the DC output of the
power supply. Power drawn by the fans for cooling can be
given by the following equation [12]:

Pfan = Pbase ·
(

RPMfan

RPMbase

)3

(5)

Pbase in this case defines the base of the unloaded system.
In our system that is the power consumption of the system
when running only the base operating system and no other
jobs. That value is obtained experimentally by measuring
the current drawn on the +12V and +5V lines, using a cur-
rent probe and an oscilloscope. IPMI sensors [13] easily
collect fan RPM data, and hence it is possible to quantify
the electrical power consumption in the system. Thus,

Eem =
∑

Pfan × tipmi−slice +
∑

Poptical × t (6)

3.5 Board Components
The quantity Eboard captures the energy required by the
support chipsets and usually fall in the 3.3V and 5V power
domains. In our case we obtain this value using current
probe based measurements. However, as in earlier cases,
current sensors for the power lines going into the board can
provide instantaneous energy draw from the power supply.
The processor, disk, fan, and optical-drive power lines are
excluded here. For our server, at most 28 additional current
sensors might be required for the entire blade [9]. Thus:

Eboard =
(∑

Vpow−line × Ipow−line

)
× ttimeslice (7)

3.6 Combined Model
The total energy consumed by the system for a given com-
putational workload is modeled as a function of these met-
rics as:

Esystem = α0(Eproc + Emem) + α1Eem

+ α2Eboard + α3Ehdd (8)



where α0,α1,α2, and α3 are unknown constants that are de-
termined through linear regression analysis and remain con-
stant for any given server architecture.

4 Application and Evaluation of Model
The power model was calibrated to the SUT by execut-
ing eight benchmarks from the SPEC CPU2006 benchmark
suite: bzip2, cactusadm, gromac, lbm, leslie3d, mcf, om-
netpp, and perlbench [14]. The power consumed is mea-
sured with a WattsUP [15] power meter connected between
the AC Main and System Under Test (SUT). The internal
memory of the power meter is cleared at the start of the run
and the measures collected during the run are downloaded
after the run completes from the meter’s internal memory
into a spreadsheet.

Current flow on the different voltage domains in the
server is measured using an Agilent MSO6014A oscillo-
scope with one Agilent 1146A current probes per system
power domain (12v, 5v, and 3.3v). This data is collected
from the oscilloscope at the end of the execution of a bench-
mark and stored in a spreadsheet on the test host.

Five classes of metrics are sampled at 5 second intervals
during the experiment: (1) CPU temperature for all proces-
sors in the system, (2) Ambient temperature in the computer
case measured in one more locations using the sensors pro-
vided by server manufacturer, (3) the number of completed
transactions processed through the system bus, (4) the num-
ber of misses that occur in the L2 cache associated with each
CPU core in the system, and (5) the amount of data trans-
ferred to/from disk.

System data is collected from the system baseboard con-
troller using the IPMI interface and the Solaris iostat
utility. Processor performance counters are collected on a
system-wide basis using the Solaris cpustat utility.

Table 1: Overall Regression Model
Coeff. Variable

β0 22.80147
β1 0.73758 Ambient Temp0
β2 0.00580 Ambient Temp1
β3 0.00002 CPU0 Die Temp
β4 0.10895 CPU1 Die Temp
β5 0.00383 HT1 Bus X-Actions
β6 0.00001 HT2 Bus X-Actions
β7 7.36579 L1/L2 Cache Miss for Core0
β8 1.18173 L1/L2 Cache Miss for Core1
β9 1.18173 L1/L2 Cache Miss for Core2
β10 1.38849 L1/L2 Cache Miss for Core3
β11 0.00001 Disk bytes read
β12 0.16657 Disk bytes written

The collected data was consolidated using the arithmetic
mean (average) and geometric means of the data sets. Trial
models were constructed using each method and a statis-
tical analysis of variance (ANOVA) was performed to de-
termine which model generated the best fit to the collected

Table 2: ANOVA for Consoldated Model
Source df SS MS F P
Regr 12 2947.92 245.66 939.56 0.00
Resid 400 104.59 0.26
Total 412 3052.50
R-sq 0.97 Adj. R-sq 0.97

data.The model was verified by examining the predicted re-
sults for each benchmark against the data collected in the
calibration test (Fig. 2). A comparison between the pre-
dicted CPU power consumption and the ambient tempera-
tures is shown in Fig. 3. The mean error per benchmark
ranged from [1.35, 2.30] Watts with median values in the
range of [0.83, 2.40] watts and standard deviation between
[0.80, 1.5] watts.

4.1 Discussion
The consolidated model is attempting to predict for all
benchmarks. Given the large volume of data generated thor-
ough the different logging mechanisms, it is nearly impos-
sible to discard bad data. Using the geometric mean as dis-
cussed in the previous section helps to smooth out some of
the errors introduced in the cases. However, the diversity of
the benchmarks used means that some discrepancies arise
within variables where we expect to see tight correlations,
This, the model predicts well in some cases and not in oth-
ers. The worst error is no more than the four present re-
ported above.

Also, the asymmetry of the β-coefficients for tightly cor-
related variables (HT1Scaled and HT2Scaled, for example)
leads us to believe non-linear relationships may exist among
these variables. Therefore, future work needs to consider
the impact of use of non-linear regression models together
with hardware performance counters.

Another observation from the model pertains to the place-
ment of the temperature sensors in the server. Ambi-
ent Temp0 reflects more of the hot air flow due to the server
design. This illustrates that for different server designs the
factors controlling the thermal envelope will be accurately
reflected in the model. Thus, we would expect to see a more
symmetric set of coefficients for Ambient Temp0 and Am-
bient Temp1 had the placement of the sensors been more
balanced in the server.

In terms of measuring performance counters, we have
used the Solaris 10 cpustat, iostat, and ipmitool
utilities. Of these, iostat and ipmitool are available
across all UNIX-based operating systems commonly used
in data centers. cpustat is a Solaris specific utility but is
already being ported to Linux. In future work, it is planned
to use tools like dtrace and oprofile for more con-
trollable and tunable performance parameters which have
major impacts on system-wide and processor wide power
consumption.

The computation methodology used in this paper
can be extended to other architectures. For exam-
ple, we would measure Xeon performance coun-



Figure 2: Actual vs. Predicted Power for SPEC CPU2006. Figure 3: Predicted Processor Power vs. CPU Temperature.

ters like BUS TRANS ANY, BUS TRANS MEM, and
BUS TRANS BURST. Similar model development and
coefficient extraction arguments would hold for dual and
quad core Xeons in different processor configurations.
Currently without data from the Intel processors it is hard
to say whether the model is more accurate on a certain
platform as compared to the other.

For a practical usage scenario the statistical coefficients
need to be computed only once using the SPEC benchmarks
for a given server architecture. They can be used as embed-
ded constants available either through the system firmware
or the operating system kernel.

The model developed in this paper is valid for any AMD
Opteron dual-core/dual-processor system using the Hyper-
Transport system bus. However, it is scalable to any quad-
core dual processors Opteron system using HyperTransport.
One would expect to see a slight difference or variation in
the predicted power due to the greater or diminished af-
fect of the die temperatures on the other parameters and
the model would have to be adjusted accordingly. For a
dual-core quad-processor system, the additional HT0 term
would be introduced into the CPU power consumption term
and the β coefficients would have to be recalculated and the
CPU power equation will have more terms. For a quad-core
quad processor system, similar recalculations would be re-
quired.

5 Conclusion
In this paper, we have introduced a comprehensive model
which uses statistical methods to predict system-wide en-
ergy consumption on server blades. The model measures
energy input to the system as a function of the work done
for completing tasks being gauged and the residual thermal
energy given off by the system as a result. Traffic on the
system bus, misses in the L2 cache, CPU temperatures, and
ambient temperatures are combined together using linear re-

gression techniques to create a predictive model which can
be employed to manage the processor thermal envelope.
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