
Verifying remote
computations using PCPs

Srinath Setty, Andrew Blumberg, and Michael Walfish
UT Austin

Can we build this?

Client
F(x)

y

Computation

output

Server

Can we build this?

Client
F(x)

y

Computation

output

Server

• Check if y equals F(x) without re-executing

Can we build this?

Client
F(x)

y

Computation

output

Server

• Check if y equals F(x) without re-executing

• Unconditional: no assumptions

Why should we build this?

• Offloading computations to the cloud

• Outsourcing computations to volunteer
machines (Enigma@home, Einstein@home, ...)

How can we solve this
problem in principle?

• Probabilistically checkable proofs (PCPs)
and argument systems [Arora et al. JACM, 1998]

How can we solve this
problem in principle?

• Probabilistically checkable proofs (PCPs)
and argument systems [Arora et al. JACM, 1998]

• PCP theorem: server proves that y = F(x)
and client validates without re-executing

We have a conflict

• PCPs are mind-blowing

We have a conflict

• PCPs are mind-blowing

• But the costs are also mind-blowing

We have a conflict

• PCPs are mind-blowing

• But the costs are also mind-blowing

‣ For polynomial evaluation (700
variables), the server takes 105 years!

We have a conflict

• PCPs are mind-blowing

• But the costs are also mind-blowing

‣ For polynomial evaluation (700
variables), the server takes 105 years!

• Our research program: try to make PCPs
practical

Rest of this talk:

• Overview of PCPs

• Our refinements

PCPs from 200,000 feet

ServerClient

Boolean
circuit

F(x)

F(x)

y

PCPs from 200,000 feet

ServerClient

Proof

Boolean
circuit

F(x)

F(x)

y

PCPs from 200,000 feet

ServerClient

Proof

Proof

Boolean
circuit

F(x)

F(x)

y

PCPs from 200,000 feet

ServerClient

Proof

Random
locations

Proof

Boolean
circuit

F(x)

F(x)

y

PCPs from 200,000 feet

ServerClient

ProofProof

Random
locations

Chosen
values

Proof

Boolean
circuit

F(x)

F(x)

y

PCPs from 200,000 feet

ServerClient

ProofProof

Accept/
Reject

Random
locations

Tests

Chosen
values

Proof

Boolean
circuit

F(x)

F(x)

y

Our attempt to make
PCPs practical

• Build on the work that introduces
interaction [Kilian CRYPTO’95, Ishai et al. CC’07]

• Use a higher-level abstraction to
represent computations

‣ Reduces cost by 8 orders of magnitude

• Apply a divide-and-conquer technique

‣ Reduces cost by 2 orders of magnitude

We build on an interactive
variant of PCPs

• The server proof is a generating function

• The server responds to queries by
evaluating the function

• The client binds the server to its function
using cryptographic commitment

[Ishai et al. CC’07]

Can we use a higher-
level abstraction?

• Use arithmetic circuits instead of Boolean
circuits

• Savings:

‣ 8 orders of magnitude at the server

‣ 4 orders of magnitude at the client

Can we apply a divide-
and-conquer strategy?

• Decompose the computation into
parallel pieces

• The client batch-verifies the computation

• Saves two orders of magnitude in costs

Examples that we
implemented

• Polynomial evaluation

• Matrix multiplication

• Fast Fourier Transform (FFT)

• Image filtering with convolution matrices

Example savings
For polynomial evaluation with 700 variables

(Local execution time: 164 msec)

interactive
baseline

post-
refinements

Server’s work 130,000 years 11.5 hours

Client’s work 940 sec 94 msec

The scheme is near-practical

Summary

• Our refinements reduce costs by over 10
orders of magnitude

• More refinements are required to make the
scheme fully practical

• Upshot: PCP-based verified computation
can be a systems problem

