Verifying remote
computations using PCPs

Srinath Setty, Andrew Blumberg, and Michael Walfish
UT Austin




Can we build this?

F(x
4 -
Y

s




Can we build this?

F(x)
4
Y

s

* Check if y equals F(x) without re-executing




Can we build this?

F(x)
Y

s

* Check if y equals F(x) without re-executing

* Unconditional: no assumptions




Why should we build this?

® Offloading computations to the cloud

® Outsourcing computations to volunteer
machines (Enigma@home, Einstein@home, ...)




How can we solve this
problem in principle?

® Probabilistically checkable proofs (PCPs)
and argument SYStems [Arora et al. JACM, 1998]




How can we solve this
problem in principle?

® Probabilistically checkable proofs (PCPs)
and argument SYStems [Arora et al. JACM, 1998]

® PCP theorem:server proves that y = F(x)
and client validates without re-executing




We have a conflict

® PCPs are mind-blowing




We have a conflict

® PCPs are mind-blowing

® But the costs are also mind-blowing




We have a conflict

® PCPs are mind-blowing

® But the costs are also mind-blowing

» For polynomial evaluation (700
variables), the server takes |10 years!




We have a conflict

® PCPs are mind-blowing

® But the costs are also mind-blowing
» For polynomial evaluation (700

variables), the server takes |10 years!

® Our research program: try to make PCPs
practical




Rest of this talk:

® Overview of PCPs

® Qur refinements




PCPs from 200,000 feet
Client J

F(x)

{Server
F(x)

|

Boolean
Circuit

Y




PCPs from 200,000 feet
Client J

F(x)

{Server
F(x)

|

Boolean
Circuit

Y




PCPs from 200,000 feet
Client J

F(x)

{Server
F(x)

l

Boolean
Circuit

Y




PCPs from 200,000 feet
h———D

Random @ Y

locations = F(x)

l

Boolean
Circuit




PCPs from 200,000 feet
h———D

Random @, Y

locations = F(x)

l

Boolean
Circuit
values l




PCPs from 200,000 feet
Client J

Random - Y

F(x)

d Server

F(x)

& Boolean
}

e e &
)

locations

Chosen circuit
values l

Accept/ 4_

Reject




Our attempt to make
PCPs practical

® Build on the work that introduces
Interaction [Kilian CRYPTO'95, Ishai et al. CC'07]

® Use a higher-level abstraction to
represent computations

» Reduces cost by 8 orders of magnitude
® Apply a divide-and-conquer technique

» Reduces cost by 2 orders of magnitude




We build on an interactive
variant of PCPs

[Ishai et al. CC’07]

® The server proof is a generating function

® The server responds to queries by
evaluating the function

® The client binds the server to its function
using cryptographic commitment




Can we use a higher-
level abstraction!?

® Use arithmetic circuits instead of Boolean
Circuits

® Savings:
» 8 orders of magnitude at the server

» 4 orders of magnitude at the client




Can we apply a divide-
and-conquer strategy!

® Decompose the computation into
parallel pieces

® The client batch-verifies the computation

® Saves two orders of magnitude in costs




Examples that we
implemented

Polynomial evaluation
Matrix multiplication
Fast Fourier Transform (FFT)

Image filtering with convolution matrices




Example savings

For polynomial evaluation with 700 variables

Interactive poOSt-
baseline refinements

Server’s work 130,000 years | 1.5 hours

Client’s work 940 sec 94 msec

(Local execution time: |64 msec)

— The scheme is near-practical




Summary

® Our refinements reduce costs by over 10
orders of magnitude

® More refinements are required to make the
scheme fully practical

® Upshot: PCP-based verified computation
can be a systems problem




