Structuring the Unstructured Middle with Chunk Computing

Justin Mazzola Paluska

Hubert Pham

Steve Ward

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA, U.S.A.

Abstract

Modern computing substrates like cloud computing
clusters, massively multi-core processors, and general-
purpose GPUs offer a wealth of computing power with
the caveat that programmers must carefully structure
their programs to fit within various hardware and com-
munication limits in order to get high performance. Un-
fortunately, modern abstractions expressly hide machine
structure from the program and program structure from
the machine, hindering automatic optimization. We in-
troduce an alternative computing abstraction—a linked
graph of finite-sized memory chunks—that explicitly ex-
poses the size and structure of programs to the operating
system. The chunk graph enables the operating system
to use size and structure to optimize how programs are
mapped onto complex machine structure.

1 Introduction

In the past few years, the computer industry has seen
the growth of three new computing substrates: elastic
cloud computing, massively multi-core computing, and
general-purpose GPU computing.

At a high-level, these three substrates are wildly dif-
ferent. Elastic cloud computing systems like Amazon’s
EC2 and Microsoft’s Azure provide dynamically ex-
pandable clusters of hosts, each connected over a virtu-
alized network. Massively multi-core processors like the
Tilera TILE [1] series of processors provide a plethora
of processor cores connected by on-chip buses and local
caches. General-purpose GPUs like NVIDIA’s Tesla [2]
provide an abundance of ALUs connected by a hierarchy
of memories.

While the granularity and specifics of these new sub-
strates differ, what is common to all of them is (1) an
abundance of processing elements and (2) programmer-
visible communication and storage hierarchies whose
proper utilization determines how efficiently the pro-
cessing elements may be used. For example, in the

cloud, intra-core operations are faster than intra-host
operations, which are faster than inter-host operations.
Likewise, in the GPU, communication and data shar-
ing within a single processing element is fast compared
to communication and sharing processing between el-
ements, which itself is fast compared to CPU to GPU
communication.

In contrast to “normal” CPU-based platforms that au-
tomatically manage the memory and communication hi-
erarchy for high performance, to wring the most perfor-
mance out of these new substrates, a programmer must
carefully manage the communications and storage hier-
archy so that the processing elements are continually fed
with instructions and data. Typically this is done by mak-
ing sure that related computations are on processing ele-
ments close to each other in the computing substrate and
that computations “fit” into the variously sized buckets
that each level of the substrate provides. Consequently,
the hardware has natural, if non-linear, set of “size” and
“distance” metrics that correlate with how well a given
program may perform on the machine.

2 Space: the Next Frontier

The previous paragraph points to using the spatial con-
cepts of “size” and “distance”, as well as “structure” that
determines how space is used, to optimize the runtime
performance of programs. Unfortunately, modern ma-
chine interfaces—strings of assembly code operating in
a flat memory—expressly hide machine structure behind
the machine language abstraction. At the same time, as-
sembly code obfuscates software structure from the run-
time managing the hardware. As Figure 1 illustrates,
machine langauge is the “thin middle” of the comput-
ing hourglass. In order to provide opportunities for op-
timization on new computing substrates, we believe that
we may need to expand the thin middle.

We would like to exploit the structure of software in
order to chop apart software elements (like data struc-



class Person {

} Programming

Language
int decode (FILE *stream) {
}
struct Node {
struct Node *next;
struct Node *prev;
}
gg% Machine
Interface
p Hardware
; rocs Management
Caches Cores Disks
Tracks Hardware

DRAM Functional
Units
Sectors

Figure 1: The structural hourglass of computing.

tures or functions) to fit inside the processing, storage,
and communication elements of the computing substrate,
ideally at runtime by an external hardware manager (e.g.
a cloud manager, a multi-core aware OS, or a GPU
runtime). Unfortunately, the assembly code compila-
tion process flattens explicit structural elements into “im-
plicit” structure. Links between data structures and pro-
gram parts are obfuscated by pointers indistinguishable
from other scalar data: their status as edges in a com-
putation graph becomes apparent only at the time when
the pointers are used as pointers by the processor. The
flattened assembly also loses all size indicators: the sizes
of both basic blocks and data structures are hidden be-
hind the flat memory abstraction, which itself hides the
complexity of the memory system.

Flat assembly code has served us well for many years,
but in this “new age” of computing with multiple and var-
ied processing elements inside complex hierarchies, the
flat abstraction might impose too high of a performance
cost and lead to too many lost optimization opportunities.

2.1 Domain-specific Solutions

There are already new domain-specific abstractions that
“thicken” the thin middle and enable the programmer to
match their problem to that of the available hardware.
In the cloud, large-scale data processing systems like
Google’s MapReduce [3] and Microsoft’s Dryad [4, 5]
expose the structure of data parallel tasks to cluster man-
agement software. The cluster management software, in
turn, manages code and data placement on hosts in the
cluster so as to achieve high hardware utilization and task
throughput. At the opposite end of the hardware spec-

trum, NVIDIA’s CUDA [6] programming model exposes
three levels of memory (private, shared, and device) to
programmers, allowing the programs to pre-fetch data
they know they will need, rather than relying on guess-
work by the processor.

2.2 An Application-Generic Approach

However, rather than requiring a specialized new pro-
gramming model, we would like to exploit the structure
already inside both programs and the computer systems
that run them. Our key insight is that a new machine
interface may allow us to better map program structures
onto the structure of the computing substrate.

This paper explores a model for computation that ex-
plicitly exposes three properties of both code and data:

Structure How code and data relate to each other.
Distance How far apart related elements are.

Volume How large programs and data are relative to
available hardware resources.

Concretely, we focus on a particular kind of structured
execution environment centered around small, simple,
finite-sized blocks of memory called chunks that are
dynamically mapped by a hardware management layer
to different levels of the communications, storage, and
compute hierarchy. Chunk-based systems explicitly ex-
pose program structure to the hardware management run-
time while at the same time providing natural distance
and volume measurements of code and data. Exposing
distance, volume, and structure information allows run-
time systems to optimize program placement, data flow,
and communication.

3 Chunks

A chunk is an ordered, fixed-size array of fixed-sized
slots. Each slot is typed and may be empty, contain scalar
data, or hold a link that points to another chunk. Chunk
links are explicit and can be used to create large data
structures out of networks of chunks. Each chunk has
an unique identifier; chunk links are simply slots typed
as references and filled with the identifier of the refer-
ent chunk. Chunk links are not addresses and have no
semantics beyond identity, giving us the freedom to dy-
namically mapped chunks to any location in the memory
while avoiding “implicit locality” implications of nearby
addresses. Each chunk is also annotated with a type, al-
lowing a runtime to distinguish and interpret chunks dif-
ferently.



3.1 Data Structures

Since chunks have a fixed number of fixed-sized slots,
there is a fixed limit to the amount of information a chunk
may contain as well as limit to the number of outgoing
links a chunk may have.

While fixed sizes may be seen as a restriction, we view
them as an advantage since large data structures must be
decomposed into a graph of inter-linked chunks. By us-
ing the number of pointer traversals between two chunks
as a distance metric, we now gain a natural notion of vol-
ume as the maximum size a group of chunks may take
up. More concretely, the volume of the neighborhood
a radius R edges around some chunk is at most s - dE,
where s is the size of a single chunk and d is the maxi-
mum out degree of a chunk. While this is a conservative
upper bound on the volume a computation may take up,
more detailed analysis that takes into account the actual
link structure in a chunk graph may reveal tighter bounds.

A “small” data structure is one whose working set’s
volume is smaller than a hardware limit, e.g., a cloud
node’s available memory, a core’s L1 cache, or bus mes-
sage buffer. Large data structures are those that over-
flow hardware resources. The hardware manager must
actively manage data flow of large data structures in the
chunk graph, e.g., by pre-fetching data into processing
elements, to maintain high performance. This is the pri-
mary advantage of our model since it reflects how large
data sets must be time-shared into finite hardware re-
sources, while at the same time exposing large structures
in small granules that may be partitioned and distributed
across clusters of hardware resources.

3.2 Computation

We integrate computation into the chunk model by em-
bedding code and active thread state inside chunks, either
by direct or just-in-time compilation, and executing pro-
grams within a management runtime that places chunks
on processing elements and translates them to native ma-
chine code and pointers as necessary.

Figure 2 shows one representation of an executing pro-
gram. In this particular representation, each computation
isrooted in a Thread chunk. Each Thread chunk links
to a Stack chunk that represents the current state of the
computation that the thread is executing. The Stack
chunk links to a Function chunk that holds the code
of the currently executing chunk, which in turn links
to any global data structure chunks to which the func-
tion may access. The Function chunk also contains
links to other Function chunks that it may potentially
call. Local variables, including any data available to the
function by way of closures, are linked from the Stack
chunk.

Thread
f(x) g(x)
Stack‘j—b TorctTon 5-» Fomer
7’ ==JSmall
Object
D ./—P D

Large Object

Figure 2: Snapshot of a program executing with limited-
size chunks. Each slot may contain scalar data or a link
to another chunk. Slots that are in use are marked in gray.
Because each chunk is limited in size, the large stack and
large object must be split into multiple chunks.

Figure 3: Three threads operating in a chunk space
with their volumes of influence for ?; = 1 highlighted.
Threads ¢; and t5 are close to each other and must to be
synchronized, while thread ¢3 may run in parallel with
the other threads.



Since there is a limit to number of instructions in each
Function chunk and a limit to how many other chunks
any given instruction can access, it follows that there is
some volume of influence defined by a radius R; from
a chunk that encompasses everything that the chunk can
read or update during its execution. If Thread chunks
of two threads have roots that are 2R; apart from each
other in the chunk graph, then they cannot influence each
other during their execution. If two threads are closer
than 2R;, their volumes of influence may overlap and
may need to be considered together by the hardware
management layer.

For example, consider Figure 3, in which three threads
execute in a chunk space. Threads ¢; and t3 are far away
from each other in the space and may be able to run con-
currently without competing for resources like memory
bandwidth. In contrast, threads ¢; and ¢2 have overlap-
ping volumes of influence and must time-share mem-
ory bandwidth and synchronize access to their shared
chunks. The operating system may be able to use this
information to, e.g., place ¢; and ¢5 on the same proces-
sor core so they can share synchronization objects, while
placing t3 on a separate core that runs in near-isolation
with no synchronization overhead.

4 Discussion

The chunk abstraction may enable new kinds of opti-
mizations. We outline three below.

4.1 Synchronizing the Volume of Influence

The volume of influence metric allows us to find “inde-
pendent subsets” of programs—those parts of the pro-
gram that operate on distinct subsets of data—at run-
time. For example, the chunk graph rooted at ¢3 in Fig-
ure 3 is one independent subset since it is so far away
from the other threads, while the combined graph of ¢;
and ¢ might form another functional subset that can run
in parallel with the ¢3 graph. We also may be able to
create independent subsets by adding additional “syn-
chronizing” chunks to artificially increase the distance
between Thread chunks beyond the 2R; threshold. If
two threads access a “synchronizing” chunk, it becomes
a hint to the operating system to automatically synchro-
nize them.

4.2 Volume versus Communication

Chunk links are references, and as such, do not refer to
particular addresses of particular chunks, but rather are
names for chunks that may reside on the same processing
element or a processing located across the network. The
chunk graph of an application exposes potential commu-
nication paths between parts of the program and where

a hardware runtime may need to manage communication
costs.

If two threads of computation on two separate process-
ing elements start operating on the same data sets—that
is, the volumes of their working sets overlap—the hard-
ware manager might choose to migrate the threads to pro-
cessing elements that are closer to each other, or even to
timeshare the threads on the same processing element in
order to reduce communication costs.

The hardware management software could, in the de-
generate case, reduce communication costs to zero at the
expense of parallelism by placing all threads on the same
processing element. Of course, doing so will cause a
large volume of chunks to operate on a single processing
element. In order to balance the volume of chunks on the
machine with communication costs, the volume of the
chunks used in the computation can be used as inputs to
a utility function that accounts for parallel speedup ver-
sus communications costs.

In an elastic environments where it is possible to in-
crease and decrease available hardware, e.g., dynamic
allocation of cloud hosts or power-constrained manage-
ment of processing elements in a GPU, we can extend
the chunk placement algorithm to also take into account
the dynamism of the set of processing elements. For ex-
ample, if a particular cloud application suddenly starts
creating many new chunks in response to user requests
and the number of chunks residing on one processing ele-
ment climbs over some threshold, the hardware manager
may automatically redirect some subset of the requests
to another already-running processing element or, if all
of the processing elements are already running at capac-
ity, to a newly powered-up processing element, ideally
splitting requests so the each machine hosts a disjoint set
of chunks and can operate independently without syn-
chronization. When the spike in chunk creation subsides
and the total volume of active chunks falls, the hardware
manager may start to coalesce chunks on fewer process-
ing elements and shut down the redundant ones.

4.3 Chunk Sizing

We require that chunks be a fixed size in order to in-
duce nice distance and volume metrics. It is an open
question what the best fixed size is. From a graph
and resource management standpoint, smaller chunks al-
low fine-grained placement of program structures, while
larger chunks amortize overheads over more bytes of
data. On the other hand, since we use chunks to model
hardware resources, the “native” packet size of network
hardware or page boundaries of memory hardware might
provide better guidelines for chunk sizes. A network-
heavy application might benefit from chunks based on a
standard Ethernet frame of 1500 bytes, while more tradi-



tional memory-oriented applications might favor a chunk
size based on a 4 KB page.

Rather than fixing physical chunk size, we virtualize
the physical chunk size. Virtualization gives the hard-
ware management layer freedom to compose a virtual
graph of fine-grained chunks out of a physical graph with
coarse-grained superchunks that better match the actual
hardware resources. Superchunks reduce link resolu-
tion overheads since virtual chunk links that point within
the superchunk could be implemented as constant off-
sets to slots elsewhere in the superchunk. They also
present an additional optimization path for the operat-
ing system: collocating closely linked chunks on the
same superchunk. For example, when executing in a net-
work environment that supports 9000-byte “jumbo” Eth-
ernet frames, the hardware management layer might coa-
lesce smaller chunks into 9000-byte superchunks. Since
the application uses only standard-sized chunks and not
superchunks, it may also run on a system with only
standard-sized chunks without modification.

Superchunks are not exposed at the application layer,
but at the hardware management layer, allowing the hard-
ware management layer to provide compatibility over
a broad range of different-scale chunk environments—
from very small hardware like GPU processing elements
to large, Internet-scale data clusters—all sharing the
same set of small virtual chunks.

5 Related Work

This work is heavily influenced by a plethora of alter-
native computer architectures and operating system de-
signs. The MuNet [7] machine and corresponding oper-
ating environment allowed a computation to span mul-
tiple processors and gradually migrate between them.
MuNet inspired our cloud computing migration ideas.
The L project [8] outlines a chunk memory system nearly
identical to ours. We expand on the £ model in two ways.
First, £ is limited to a fixed topology of nodes, while
we allow fluid expansion and contraction of computation
nodes. Second, our chunks are network-accessible, while
L’s chunks work only in the context of a single machine.

Chunks serve the purpose that fixed-sized virtual
memory pages do for typical operating system kernels,
namely that they abstract resource allocation and place-
ment. The virtual memory system in the Mach micro-
kernel [9] allows memory objects, like chunks, to be
mapped dynamically by applications. Unlike chunks,
however, Mach’s memory objects are unstructured and
of arbitrary size, limiting the analysis that may be per-
formed on them. Alternatively, the Barrelfish multiker-
nel [10] uses information from explicit message passing
to optimize communication, much as we plan to optimize
memory allocation with chunks.

A chunk-based system may be able to use optimiza-
tions developed for Non-Uniform Memory Architectures
(NUMA). For example, Bolosky et al.’s NUMA kernel
[11] uses VM pages as the unit of sharing and replica-
tion. Unfortunately, VM pages are prone to “false shar-
ing” of different objects on the same VM page. Chunks
may have the same problem if a compiler puts two ob-
jects in the same chunk. Fortunately, Granston et al. [12]
argue that the compiler may be able to reduce false shar-
ing by separating objects into different pages or chunks.
Chilimbli et al. [13, 14] show that the order of fields in
a data structure may help cache performance; a chunk
compiler may re-order slots in a chunk to increase local-
ity of reference.

6 Conclusions and Future Work

Chunks expose program structure and machine structure
to the operating system and hardware management lay-
ers of the computing stack, allowing optimization based
on structure. We have successfully used chunks as the
data structures of a collaborative video editing applica-
tion called ChunkStream [15]. We are implementing a
distributed chunk naming system and interpreter.

References

[1] D. Wentzlaff et al. On-Chip interconnection architecture of the
tile processor. IEEE Micro, 27(5):15-31, 2007.

[2] E. Lindholm et al. NVIDIA tesla: A unified graphics and com-
puting architecture. /EEE Micro, 28(2):39-55, 2008.

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI, 2004.

[4] Michael Isard et al. Dryad: distributed data-parallel programs
from sequential building blocks. In EuroSys, 2007.

[5] Yuan Yu et al. DryadLINQ: a system for General-Purpose dis-
tributed Data-Parallel computing using a High-Level language.
In OSDI, 2008.

[6] John Nickolls et al. Scalable parallel programming with CUDA.
Queue, 6(2):40, 2008.

[7] Robert H. Halstead Jr. and Stephen A. Ward. The MuNet: a scal-
able decentralized architecture for parallel computation. In ISCA,
1980.

[8] Joseph Derek Morrison. A scalable multiprocessor architecture
using Cartesian Network-Relative Addressing. M.S. thesis, Mas-
sachusetts Institute of Technology, 1989.

[9]1 M. Young et al. The duality of memory and communication in the
implementation of a multiprocessor operating system. In SOSP,
1987.

[10] Andrew Baumann et al. The multikernel: A new OS architecture
for scalable multicore systems. In SOSP, 2009.

[11] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective
techniques for NUMA memory management. In SOSP, 1989.

[12] Elana D Granston and Harry A. G Wijshoff. Managing pages
in shared virtual memory systems: getting the compiler into the
game. In ICS, 1993.

[13] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-
conscious structure layout. In PLDI, 1999.

[14] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-
conscious structure definition. In PLDI, 1999.

[15] Justin Mazzola Paluska and Hubert Pham. Interactive streaming
of structured data. In PerCom, 2010.



