

Abstract

Virtualization offers many benefits such as live migration, resource consolidation, and checkpointing. However, there

are many cases where the overhead of virtualization is too high to justify for its merits. Most desktop and laptop PCs

and many large web properties run natively because the benefits of virtualization are too small compared to the

overhead.

We propose a new middle ground: on-demand virtualization, in which systems run natively when they need native

performance or features but can be converted on-the-fly to run virtually when necessary. This enables the user or

system administrator to leverage the most useful features of virtualization, such as or checkpointing or consolidating

workloads, during off-peak hours without paying the overhead during peak usage.

We have developed a prototype of on-demand virtualization in Linux using the hibernate feature to transfer state

between native execution and virtual execution, and find even networking applications can survive being virtualized.

1. Introduction

System virtualization offers many benefits in both data-

center and desktop environments, such as live migration,

multi-tenancy, checkpointing, and the ability to run dif-

ferent operating systems at once. These features enable

hardware maintenance with little downtime, load ba-

lancing for better throughput or power efficiency, and

safe software updates. As a result, virtualization has seen

wide adoption for infrastructure Cloud providers, server

consolidation in the enterprise, and for multi-OS appli-

cation usage on the desktop.

However, when the benefit of virtualization is not al-

ways needed, the performance costs and limitations can

be prohibitively high. Virtualization adds overhead to

memory management, due to multiple levels of address

translation, and to I/O, due to virtualizing devices. In

addition, some classes of hardware, such as GPUs, are not

well-supported by virtualization. While hardware support

can reduce the overhead, virtual performance is still

below native. As a result, most PC users and many large

cloud providers, such as Google and Microsoft, do not

run their core applications on virtual machines.

We propose that systems should provide the best of

both worlds, with a seamless transition between the two:

native performance on native hardware most of the time,

with the ability to reap the benefits of virtualization when

needed. An operating system runs natively, with full

access to the performance and capabilities of its native

platform, until virtualization is needed. At that point, the

system starts a virtual machine monitor and migrates the

OS onto virtual hardware, allowing full access to features

such as migration and checkpointing. At any point, the

OS can return to native execution on its original hardware.

We call this approach on-demand virtualization, and it

gives operating systems an ability to be virtualized

without service disruption.

Reaping the benefits of virtualization without its costs

has been proposed previously in other forms. Microvisors

[14] provided the first step in the direction toward

on-demand virtualization. However, they do not virtual-

ize the entire system so their benefit is limited to online

maintenance. Recent proposals suggest migration without

virtualization [12] and multi-tenancy without virtualiza-

tion [10]. These approaches are complementary to ours;

they bring some of the benefits of virtualization all of the

time, rather than most of the benefits some of the time.

We have built a prototype implementation of

on-demand virtualization that converts a Linux OS run-

ning natively on Intel hardware into a virtual machine

running inside KVM [11] on the same hardware. We use

hibernation to capture OS and user-space state to disk,

and then resume the system inside a virtual machine.

Existing OS mechanisms, such as hot plugging and de-

vice indirection, allow the restored OS to talk to the

virtual hardware. However, we find many complications

at the lowest layers of the operating system with platform

devices such as the PCI bus and interrupt controllers that

are configurable only at boot time.

 With our current prototype, we show that on-demand

virtualization is possible with no special hardware and

only minimal modifications that notify the guest OS about

changed platform hardware. Our modified version of

Linux can be virtualized on the fly, and running applica-

tions with open network connections survive the process.

The Best of Both Worlds with On-Demand Virtualization

Thawan Kooburat, Michael Swift

University of Wisconsin-Madison
kooburat@cs.wisc.edu, swift@cs.wisc.edu

2. Motivation

Despite its benefits, virtualization has not yet become

ubiquitous. At both the high end, on data-center scale

systems, and the low end, on PCs, virtualization often

remains the exception rather than the rule.

2.1. Concerns with Virtualization

A primary concern over virtualization is performance: for

systems that do not benefit from multi-tenancy, the

overhead of virtualization is not captured by its benefits.

Despite recent advances in hardware acceleration for

virtualization [2, 15], the performance overhead of vir-

tualization is prohibitive.

A primary source of overhead is I/O: virtual machine

monitors (VMMs) implement virtual I/O devices [17]

that require costly traps into the VMM on every I/O

operation. While direct I/O reduces this cost by running

drivers in the guest OS [5], it also reduces the usability of

virtualization by complicating checkpoints and migration

[9]. Furthermore, several common PC device functio-

nalities, such as 3D graphics, wireless networking, and

power management, are poorly supported by virtualiza-

tion. For GPUs, performance drops dramatically due to

the extra layers of abstraction [8]. Due to the lack of

support from VMM, access to wireless networks is in-

stead provided via Ethernet, so the guest cannot use its

management tools to select a wireless network or enter

network passwords. Similarly, power-management me-

chanisms such as ACPI [1] are not virtualized, preventing

a guest OS from efficiently managing power usage on

mobile devices. These devices are inherently difficult to

virtualize because the hardware maintains significant

amounts of configuration state.

A second large cost is memory virtualization: every

memory access must be translated by an OS-level page

table and a VMM-level page table. Nested page tables

reduce the overhead by removing the maintenance cost of

shadow page tables [2]. However, the additional cost of

walking multiple page tables to satisfy a TLB miss can

still reduce performance by ten percent or more [6]. In a

large data center this loss could require purchasing addi-

tional machines to serve peak workloads.

2.2. Arguments for On-demand Virtualization

Despite these costs, virtualization still offers benefits if it

is available when needed. We see uses for on-demand

virtualization in both data centers and desktop environ-

ment. Within a data center the overhead of virtualization

during peak workload hours can make native execution

more efficient, despite lower utilization from single te-

nancy. When workloads fall, services can switch to a

virtualized mode for consolidation onto fewer machines,

increasing utilization and decreasing power consumption.

With lower load and ample machines, the overhead of

virtualization is not significant.

Additionally, deterministic VM record/replay can be

useful to provide low-overhead dynamic program analy-

sis [7]. When encountering an issue in a production en-

vironment, machines can be virtualized and start re-

cording execution logs for online or offline analysis

without modifying existing applications.

In a desktop environment, on-demand virtualization

allows users to checkpoint a running system for backup

which allows the system to roll back if the system fails or

is compromised. In addition, users can use Internet sus-

pend/resume [13] to migrate their environment to another

computer for mobility.

While the overhead of virtualization can be reduced,

for scenarios where it is only needed occasionally

on-demand virtualization offers the best of both worlds:

native performance with virtual benefits. For this to be

useful, on-demand virtualization must have no overhead

when running natively, and a seamless transition without

service disruption when enabled.

3. Challenges

With on-demand virtualization, an operating system runs

natively, with full access to the hardware, most of the

time. When a user or administrator initiates virtualization,

the OS pauses execution, starts a VMM and transfers its

state into a virtual machine. The system replaces the real

hardware with virtual hardware implemented by the

VMM before resuming the OS.

This process raises numerous challenges due to the

tight ties between the OS and the real hardware.

3.1. Capturing OS and Device State

The first step of virtualizing is capturing the state of a

running operating system, so that it can be converted into

a virtual machine. In a fully virtualized system, the VMM

can capture guest state nonintrusively by pausing the

guest and saving the contents of memory and virtual

hardware. In contrast, on-demand virtualization requires

that the OS which is about to be virtualized must capture

its own state, including hardware state that may not easily

be extracted. For example, the configuration state of

platform devices, such as timers, interrupt controllers and

I/O buses must be extracted and transferred into the vir-

tual machine.

3.2. Discovering Devices inside the VM

We do not require that the VMM emulate the same set of

devices as its host machine—to do otherwise would place

a high burden on developing emulators for thousands of

common devices. However, this approach requires that

the OS must be able to find and use virtual hardware when

it switches to a virtual machine.

For many peripherals, device hotplug allows the OS to

find, initialize, and use new devices. However, there is a

large set of platform devices that that the OS assumes can

never change. As a result, current operating systems do

not discover or configure these devices after boot.

3.3. Transferring Device State

After new devices have been discovered, the OS must

configure and connect to the devices. Any OS structures

referring to native devices must be transferred to the

corresponding virtual device. For example, open files

must be transferred from the real disk to a virtual disk so

that file access continues after conversion. Similarly,

network state, such as open connections, must also mi-

grate to the virtual device. Thus, any driver or device state

associate with the real hardware must be transferred to the

virtual hardware after conversion.

4. Solutions

Despite the formidable challenges of on-demand virtua-

lization, we observe that existing mechanisms provided

by the OS can be repurposed to achieve this task. For

example, hibernation allows the OS to save its state to

disk, effectively capturing OS and device state. As a

result, we modify the guest OS to leverage these me-

chanisms to simplify the conversion process. However,

these are not sufficient to solve all the problems of

on-demand virtualization.

4.1. Capturing OS State

We rely on the hibernation mechanism to transfer OS

state from a native machine to a virtual machine: we

suspend the native OS to disk, and then resume it within a

virtual machine. Hibernation is normally used for ze-

ro-power suspend. However, it provides the essential

capability needed for on-demand virtualization, which is

to capture the state of the OS, including its drivers, and

applications. The Linux hibernation mechanism snap-

shots the state of memory to disk, and relies on power

management features to suspend and resume devices.

Figure 2 (a) shows the steps of a normal hibernation.

During the suspend process, the hibernation code

freezes processes to stop them from modifying memory.

It asks drivers to suspend, causing them to disable the

devices and copy their state into memory. Finally, the

kernel shuts down its own activity except for one thread

to copy memory to a hibernate image. Then, it unfreezes

necessary subsystems to write the image to disk. The

hibernate image contains the entire system state, exactly

what is needed for running on a virtual machine.

During resume from hibernation, a boot kernel, which

must be the same kernel that created the hibernate image,

boots the machine and loads the image from disk. The

boot kernel then suspends the devices it was using, and

overwrites itself with the memory pages from the hiber-

nate image to restore the resume kernel. The resume

kernel then restores device states and resumes all process.

As shown in Figure 1, to use hibernation for

on-demand virtualization, the system loads a VMM after

restart, and starts the boot kernel inside a virtual machine.

4.2. Connecting with VM Devices

Hibernation can only resume an OS on a machine with a

matching hardware profile: the resume kernel does not

rescan hardware to see if anything changed. Here we

present several methods for dealing with this problem.

Hotplug to attach new devices. Several classes of de-

vice support hotplug, meaning that they can be inserted or

removed from a running system, and Linux will discover

and configure the new device. The system can therefore

transition hotplug-capable devices from physical to vir-

tual hardware by virtually unplugging the physical de-

vices and plugging in new virtual devices. Thus, we

modify the resume kernel to rescan the PCI bus to dis-

cover virtual devices and attach them to the OS during the

resume process. However, this process makes the device

available, but does not connect them to any kernel

structures or applications. For example, an open file

system will not automatically attach to a new disk.

Logical devices to retain device state. Linux provides

several logical devices that act as an interposition layer

between the kernel and device drivers. These devices are

created to provide aggregation or high availability. For

example, the network bonding driver can switch a net-

work stack between different devices, and the block

device mapper can do the same for file systems and disks.

Thus, these logical devices allow existing kernel struc-

tures to transfer their state from one device to another,

and can therefore disconnect from the physical device

and connect to the virtual ones.

Upon resume, the system can update each logical de-

vice to point to the new virtual hardware. For example, it

updates the bonding driver to switch from the physical

network device to the virtual network, and the device

mapper to switch from a physical disk to a virtual disk. At

this point, higher levels of the kernel and applications can

continue to use these devices as if nothing happened.

Figure 1: Overview of system operations

Information passing from the boot kernel. In many

cases, there are no logical devices to transfer state. This is

particularly true for low-level platform devices, such as

the ACPI controller that configures I/O buses and inter-

rupts. Normally, Linux configures this device during boot

to establish device address mappings and route interrupts.

After boot, the code is discarded from memory to save

space.

We therefore rely on the boot kernel to correctly con-

figure the hardware, and then pass the configuration to the

resume kernel, which can update its ACPI state.

Use of legacy devices. We can leverage virtual machine

support for legacy interfaces for devices that do not

support hotplug or logical devices. These interfaces, such

as VGA mode, are left over from earlier PC architectures,

and there is no variation between different models of

devices. Hence, a generic driver can operate these de-

vices, and the kernel can statically configure them. For

example, all PC display adapters support VGA display

mode. By switching to this mode prior to hibernate, the

display works seamlessly across the conversion.

Preparation for virtualization. The operating system

must make minimal preparations for virtualization. First,

it must avoid using hardware that is unavailable in a

virtual machine. If the capabilities of the virtual hard-

ware, such as support for certain instructions or platform

devices (e.g., an IOMMU) are not available then the

native system must take care not to use these features if it

wishes to virtualize at some point. However, if the OS can

operate without using devices like GPUs, they can be

disabled just prior to conversion. Second, the OS must

reserve resources, such as a disk partition, to contain the

VMM. Third, the OS must run with logical devices de-

scribed above at all times. Compared to full virtualiza-

tion, these add only minimal overhead.

5. Implementation

We have implemented a prototype version of on-demand

virtualization for the Linux 2.6.35 kernel using KVM as a

virtual machine monitor. A machine must have at least

two disk partitions: a VMM partition and a guest parti-

tion. The guest partition must have all the necessary

drivers to run on both the physical machine and the virtual

machine. Figure 1 shows the overall process of the con-

version.

We modify the TuxOnIce hibernation code [3] as

shown in Figure 2(b). Before hibernation, the kernel

performs extra tasks to prepare for running inside a VM,

including loading drivers for virtual devices. After the

resume kernel is restored inside a VM, the kernel recon-

figures platform devices, rescans for PCI devices and

updates logical devices.

5.1. Dealing with Devices

Each class of devices requires a slightly different solution

for transitioning from physical to virtual hardware.

Block devices. The device mapper provides a logical

block device that can redirect requests to other block

devices based on a mapping table. In order to reconnect

file systems to the correct partition, the kernel records file

system UUIDs for each partition before hibernation.

When the resume kernel discovers VM disk controllers,

new block devices will be added to the kernel device tree.

By comparing each block device’s UUID with the pre-

viously recorded one, the kernel can find virtual devices

corresponding to the old physical partitions and updates

mapping tables accordingly.

Network interfaces. We use the Linux bonding driver to

create a logical network interface. Before hibernate, the

bonding driver attaches only to the physical network card.

After resume, the kernel discovers a virtual network card

and attaches it to the bonding driver. The bonding driver

finds that the physical device is unavailable and sends all

packets to the virtual NIC instead. The use of bonding

driver is inspired by work on VM live migration [18].

Platform devices. We modify the boot kernel, used

during resume, to pass on the IOAPIC and ACPI timer

configuration data to the resume kernel. However, we

cannot reprogram PCI interrupt routing in the resume

kernel, so instead we update the kernel’s routing tables

with the boot kernel’s interrupt configuration.

5.2. Preliminary Results

Our implementation is preliminary and only supports

one-way conversion from native to virtual execution. The

conversion takes about 90 seconds, and active ssh/scp

connections remain open. The majority of time is spent in

hibernate/resume process and rebooting the machine.

We plan to improve the conversion speed by storing

Figure 2: Comparison between the hibernate/resume

process and the virtualize process.

the hibernate image in RAM and using kexec [16] to

reboot into VMM partition since it can preserve RAM

content. In addition, we also need to add support for

devirtualizing by transferring a VM back to run on its

original physical machine. We can rely on the fact that we

only detach original physical devices from their drivers to

make them inactive prior to conversion. This assumption

will simplify devirtualization since we can enable the

devices by attaching back their drivers.

6. Related Work

There are many approaches which try to bring in the

benefits of virtualization without its cost. Here we list

several ideas which try to achieve this goal.

The first step toward on-demand virtualization was

demonstrated by microvisors on an Alpha processor

system [14]. However, their goal is to support online

maintenance instead of enabling other benefits of virtua-

lization. As a result, they did not virtualize devices or

memory, and relied instead on having extra hardware

available.

VMware Converter [4] is capable of cloning a physical

machine into a VM. An agent copies data from a physical

machine into a VM image. However, it does not include

running state of the physical machine, such as open ap-

plications. In addition, the VM must be rebooted first to

discover new hardware.

Another line of work is to provide some benefits of

virtualization without relying on a VMM. OS live mi-

gration [12] adds whole-system migration to an OS. In

order to achieve this, each class of device must provide an

import/export interface to facilitate the transfer of ab-

stract device state during the migration. In contrast, we

rely on power management and logical devices because

they require no modification to existing drivers.

NoHype [10] uses hardware features to partition re-

sources such as processors, memory and devices between

each guest OS. This approach allows guest OS to execute

natively without VMM intervention most of the time.

However, NoHype requires additional hardware support

and does not address hardware differences in the case of

live migration. In contrast, on-demand virtualization

works with existing hardware, and relies on virtual

hardware to mask device differences.

7. Conclusion

We propose on-demand virtualization as a mechanism for

reaping the benefits of virtualization in environments

where its merits do not justify for paying for its cost all

the time. Thus, it can be useful in many cases: datacenters

providing machines with native performance and PCs

requiring devices that are not emulated by a VMM.

We showed that on-demand virtualization is possible

by implementing a prototype in Linux that can virtualize

while retaining network connectivity. We found that

platform devices impose a major obstacle because they

were not designed to be reconfigured after the boot phase.

However, retaining OS and device driver states across the

conversion is not a major issue as hibernation and logical

devices can be used to solve this problem.

8. Acknowledgements

We would like to thank people in our Sonar systems

group and anonymous reviewers for valuable feedback.

Swift has a significant financial interest in Microsoft.

References

[1] ACPI Specification
http://www.acpi.info/DOWNLOADS/ACPIspec40a.

pdf.

[2] AMD-V Nested Paging
http://developer.amd.com/assets/NPT-WP-1%20

1-final-TM.pdf.

[3] Linux software suspend http://www.tuxonice.net/.

[4] VMware vCenter Converter
http://www.vmware.com/products/converter/.

[5] D. Abramson, J. Jackson, S. Muthrasanallur, et al. Intel

Virtualization Technology for Directed I/O, Intel Tech-

nology Journal, 2006.

[6] R. Bhargava, B. Serebrin, F. Spadini, et al. Accelerating

two-dimensional page walks for virtualized systems,

ASPLOS, 2008.

[7] J. Chow, T. Garfinkel, and P.M. Chen. Decoupling dy-

namic program analysis from execution in virtual envi-

ronments, USENIX, 2008.

[8] M. Dowty and J. Sugerman. GPU virtualization on VM-

ware’s hosted I/O architecture, WIOV, 2008.

[9] A. Kadav and M. Swift. Live migration of direct-access

devices, SIGOPS Oper. Syst. Rev., 2009.

[10] E. Keller, J. Szefer, J. Rexford, et al. NoHype: virtualized

cloud infrastructure without the virtualization, ISCA,

2010.

[11] A. Kivity, Y. Kamay, D. Laor, et al. kvm: the Linux virtual

machine monitor, OLS, 2007.

[12] M. Kozuch, M. Kaminsky, and M.P. Ryan. Migration

without Virtualization, HotOS, 2009.

[13] M. Kozuch and M. Satyanarayanan. Internet sus-

pend/resume, HotMobile, 2002.

[14] D.E. Lowell, Y. Saito, and E.J. Samberg. Devirtualizable

virtual machines enabling general, single-node, online

maintenance, ASPLOS, 2004.

[15] G. Neiger, A. Santoni, F. Leung, et al. Intel Virtualization

Technology: Hardware Support for Efficient Processor

Virtualization, Intel Technology Journal, 2006.

[16] H. Nellitheertha. Reboot Linux faster using kexec
http://www.ibm.com/developerworks/linux/lib

rary/l-kexec.html.

[17] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtua-

lizing I/O Devices on VMware Workstation’s Hosted

Virtual Machine Monitor, USENIX, 2001.

[18] E. Zhai, G.D. Cummings, and Y. Dong. Live migration

with pass-through device for Linux VM, OLS, 2008.

