
 

Abstract 

Virtualization offers many benefits such as live migration, resource consolidation, and checkpointing. However, there 

are many cases where the overhead of virtualization is too high to justify for its merits. Most desktop and laptop PCs 

and many large web properties run natively because the benefits of virtualization are too small compared to the 

overhead. 

We propose a new middle ground: on-demand virtualization, in which systems run natively when they need native 

performance or features but can be converted on-the-fly to run virtually when necessary. This enables the user or 

system administrator to leverage the most useful features of virtualization, such as or checkpointing or consolidating 

workloads, during off-peak hours without paying the overhead during peak usage.  

We have developed a prototype of on-demand virtualization in Linux using the hibernate feature to transfer state 

between native execution and virtual execution, and find even networking applications can survive being virtualized. 

 

 

1. Introduction 

System virtualization offers many benefits in both data-

center and desktop environments, such as live migration, 

multi-tenancy, checkpointing, and the ability to run dif-

ferent operating systems at once. These features enable 

hardware maintenance with little downtime, load ba-

lancing for better throughput or power efficiency, and 

safe software updates. As a result, virtualization has seen 

wide adoption for infrastructure Cloud providers, server 

consolidation in the enterprise, and for multi-OS appli-

cation usage on the desktop. 

However, when the benefit of virtualization is not al-

ways needed, the performance costs and limitations can 

be prohibitively high. Virtualization adds overhead to 

memory management, due to multiple levels of address 

translation, and to I/O, due to virtualizing devices. In 

addition, some classes of hardware, such as GPUs, are not 

well-supported by virtualization. While hardware support 

can reduce the overhead, virtual performance is still 

below native. As a result, most PC users and many large 

cloud providers, such as Google and Microsoft, do not 

run their core applications on virtual machines.  

We propose that systems should provide the best of 

both worlds, with a seamless transition between the two: 

native performance on native hardware most of the time, 

with the ability to reap the benefits of virtualization when 

needed. An operating system runs natively, with full 

access to the performance and capabilities of its native 

platform, until virtualization is needed. At that point, the 

system starts a virtual machine monitor and migrates the 

OS onto virtual hardware, allowing full access to features 

such as migration and checkpointing. At any point, the 

OS can return to native execution on its original hardware. 

We call this approach on-demand virtualization, and it 

gives operating systems an ability to be virtualized 

without service disruption.  

Reaping the benefits of virtualization without its costs 

has been proposed previously in other forms. Microvisors 

[14] provided the first step in the direction toward 

on-demand virtualization. However, they do not virtual-

ize the entire system so their benefit is limited to online 

maintenance. Recent proposals suggest migration without 

virtualization [12] and multi-tenancy without virtualiza-

tion [10]. These approaches are complementary to ours; 

they bring some of the benefits of virtualization all of the 

time, rather than most of the benefits some of the time.  

We have built a prototype implementation of 

on-demand virtualization that converts a Linux OS run-

ning natively on Intel hardware into a virtual machine 

running inside KVM [11] on the same hardware. We use 

hibernation to capture OS and user-space state to disk, 

and then resume the system inside a virtual machine. 

Existing OS mechanisms, such as hot plugging and de-

vice indirection, allow the restored OS to talk to the 

virtual hardware. However, we find many complications 

at the lowest layers of the operating system with platform 

devices such as the PCI bus and interrupt controllers that 

are configurable only at boot time. 

 With our current prototype, we show that on-demand 

virtualization is possible with no special hardware and 

only minimal modifications that notify the guest OS about 

changed platform hardware. Our modified version of 

Linux can be virtualized on the fly, and running applica-

tions with open network connections survive the process.  
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2. Motivation 

Despite its benefits, virtualization has not yet become 

ubiquitous. At both the high end, on data-center scale 

systems, and the low end, on PCs, virtualization often 

remains the exception rather than the rule. 

2.1. Concerns with Virtualization 

A primary concern over virtualization is performance: for 

systems that do not benefit from multi-tenancy, the 

overhead of virtualization is not captured by its benefits. 

Despite recent advances in hardware acceleration for 

virtualization [2, 15], the performance overhead of vir-

tualization is prohibitive.  

A primary source of overhead is I/O: virtual machine 

monitors (VMMs) implement virtual I/O devices [17] 

that require costly traps into the VMM on every I/O 

operation. While direct I/O reduces this cost by running 

drivers in the guest OS [5], it also reduces the usability of 

virtualization by complicating checkpoints and migration 

[9]. Furthermore, several common PC device functio-

nalities, such as 3D graphics, wireless networking, and 

power management, are poorly supported by virtualiza-

tion. For GPUs, performance drops dramatically due to 

the extra layers of abstraction [8]. Due to the lack of 

support from VMM, access to wireless networks is in-

stead provided via Ethernet, so the guest cannot use its 

management tools to select a wireless network or enter 

network passwords. Similarly, power-management me-

chanisms such as ACPI [1] are not virtualized, preventing 

a guest OS from efficiently managing power usage on 

mobile devices. These devices are inherently difficult to 

virtualize because the hardware maintains significant 

amounts of configuration state. 

A second large cost is memory virtualization: every 

memory access must be translated by an OS-level page 

table and a VMM-level page table. Nested page tables 

reduce the overhead by removing the maintenance cost of 

shadow page tables [2]. However, the additional cost of 

walking multiple page tables to satisfy a TLB miss can 

still reduce performance by ten percent or more [6]. In a 

large data center this loss could require purchasing addi-

tional machines to serve peak workloads. 

2.2. Arguments for On-demand Virtualization 

Despite these costs, virtualization still offers benefits if it 

is available when needed. We see uses for on-demand 

virtualization in both data centers and desktop environ-

ment. Within a data center the overhead of virtualization 

during peak workload hours can make native execution 

more efficient, despite lower utilization from single te-

nancy. When workloads fall, services can switch to a 

virtualized mode for consolidation onto fewer machines, 

increasing utilization and decreasing power consumption. 

With lower load and ample machines, the overhead of 

virtualization is not significant.  

Additionally, deterministic VM record/replay can be 

useful to provide low-overhead dynamic program analy-

sis [7]. When encountering an issue in a production en-

vironment, machines can be virtualized and start re-

cording execution logs for online or offline analysis 

without modifying existing applications. 

In a desktop environment, on-demand virtualization 

allows users to checkpoint a running system for backup 

which allows the system to roll back if the system fails or 

is compromised. In addition, users can use Internet sus-

pend/resume [13] to migrate their environment to another 

computer for mobility. 

While the overhead of virtualization can be reduced, 

for scenarios where it is only needed occasionally 

on-demand virtualization offers the best of both worlds: 

native performance with virtual benefits. For this to be 

useful, on-demand virtualization must have no overhead 

when running natively, and a seamless transition without 

service disruption when enabled.  

3. Challenges 

With on-demand virtualization, an operating system runs 

natively, with full access to the hardware, most of the 

time. When a user or administrator initiates virtualization, 

the OS pauses execution, starts a VMM and transfers its 

state into a virtual machine. The system replaces the real 

hardware with virtual hardware implemented by the 

VMM before resuming the OS. 

This process raises numerous challenges due to the 

tight ties between the OS and the real hardware. 

3.1.  Capturing OS and Device State 

The first step of virtualizing is capturing the state of a 

running operating system, so that it can be converted into 

a virtual machine. In a fully virtualized system, the VMM 

can capture guest state nonintrusively by pausing the 

guest and saving the contents of memory and virtual 

hardware. In contrast, on-demand virtualization requires 

that the OS which is about to be virtualized must capture 

its own state, including hardware state that may not easily 

be extracted.  For example, the configuration state of 

platform devices, such as timers, interrupt controllers and 

I/O buses must be extracted and transferred into the vir-

tual machine.  

3.2. Discovering Devices inside the VM 

We do not require that the VMM emulate the same set of 

devices as its host machine—to do otherwise would place 

a high burden on developing emulators for thousands of 

common devices. However, this approach requires that 

the OS must be able to find and use virtual hardware when 

it switches to a virtual machine. 



 

For many peripherals, device hotplug allows the OS to 

find, initialize, and use new devices. However, there is a 

large set of platform devices that that the OS assumes can 

never change. As a result, current operating systems do 

not discover or configure these devices after boot. 

3.3. Transferring Device State 

After new devices have been discovered, the OS must 

configure and connect to the devices. Any OS structures 

referring to native devices must be transferred to the 

corresponding virtual device. For example, open files 

must be transferred from the real disk to a virtual disk so 

that file access continues after conversion. Similarly, 

network state, such as open connections, must also mi-

grate to the virtual device. Thus, any driver or device state 

associate with the real hardware must be transferred to the 

virtual hardware after conversion. 

4. Solutions 

Despite the formidable challenges of on-demand virtua-

lization, we observe that existing mechanisms provided 

by the OS can be repurposed to achieve this task. For 

example, hibernation allows the OS to save its state to 

disk, effectively capturing OS and device state. As a 

result, we modify the guest OS to leverage these me-

chanisms to simplify the conversion process. However, 

these are not sufficient to solve all the problems of 

on-demand virtualization. 

4.1.  Capturing OS State 

We rely on the hibernation mechanism to transfer OS 

state from a native machine to a virtual machine: we 

suspend the native OS to disk, and then resume it within a 

virtual machine. Hibernation is normally used for ze-

ro-power suspend. However, it provides the essential 

capability needed for on-demand virtualization, which is 

to capture the state of the OS, including its drivers, and 

applications. The Linux hibernation mechanism snap-

shots the state of memory to disk, and relies on power 

management features to suspend and resume devices. 

Figure 2 (a) shows the steps of a normal hibernation. 

During the suspend process, the hibernation code 

freezes processes to stop them from modifying memory. 

It asks drivers to suspend, causing them to disable the 

devices and copy their state into memory. Finally, the 

kernel shuts down its own activity except for one thread 

to copy memory to a hibernate image. Then, it unfreezes 

necessary subsystems to write the image to disk. The 

hibernate image contains the entire system state, exactly 

what is needed for running on a virtual machine. 

During resume from hibernation, a boot kernel, which 

must be the same kernel that created the hibernate image, 

boots the machine and loads the image from disk. The 

boot kernel then suspends the devices it was using, and 

overwrites itself with the memory pages from the hiber-

nate image to restore the resume kernel. The resume 

kernel then restores device states and resumes all process.  

As shown in Figure 1, to use hibernation for 

on-demand virtualization, the system loads a VMM after 

restart, and starts the boot kernel inside a virtual machine. 

4.2. Connecting with VM Devices 

Hibernation can only resume an OS on a machine with a 

matching hardware profile: the resume kernel does not 

rescan hardware to see if anything changed. Here we 

present several methods for dealing with this problem.  

Hotplug to attach new devices. Several classes of de-

vice support hotplug, meaning that they can be inserted or 

removed from a running system, and Linux will discover 

and configure the new device. The system can therefore 

transition hotplug-capable devices from physical to vir-

tual hardware by virtually unplugging the physical de-

vices and plugging in new virtual devices. Thus, we 

modify the resume kernel to rescan the PCI bus to dis-

cover virtual devices and attach them to the OS during the 

resume process. However, this process makes the device 

available, but does not connect them to any kernel 

structures or applications. For example, an open file 

system will not automatically attach to a new disk. 

Logical devices to retain device state. Linux provides 

several logical devices that act as an interposition layer 

between the kernel and device drivers. These devices are 

created to provide aggregation or high availability. For 

example, the network bonding driver can switch a net-

work stack between different devices, and the block 

device mapper can do the same for file systems and disks. 

Thus, these logical devices allow existing kernel struc-

tures to transfer their state from one device to another, 

and can therefore disconnect from the physical device 

and connect to the virtual ones.  

Upon resume, the system can update each logical de-

vice to point to the new virtual hardware. For example, it 

updates the bonding driver to switch from the physical 

network device to the virtual network, and the device 

mapper to switch from a physical disk to a virtual disk. At 

this point, higher levels of the kernel and applications can 

continue to use these devices as if nothing happened.  

 
Figure 1: Overview of system operations 



 

Information passing from the boot kernel. In many 

cases, there are no logical devices to transfer state. This is 

particularly true for low-level platform devices, such as 

the ACPI controller that configures I/O buses and inter-

rupts. Normally, Linux configures this device during boot 

to establish device address mappings and route interrupts. 

After boot, the code is discarded from memory to save 

space. 

We therefore rely on the boot kernel to correctly con-

figure the hardware, and then pass the configuration to the 

resume kernel, which can update its ACPI state. 

Use of legacy devices. We can leverage virtual machine 

support for legacy interfaces for devices that do not 

support hotplug or logical devices. These interfaces, such 

as VGA mode, are left over from earlier PC architectures, 

and there is no variation between different models of 

devices. Hence, a generic driver can operate these de-

vices, and the kernel can statically configure them. For 

example, all PC display adapters support VGA display 

mode. By switching to this mode prior to hibernate, the 

display works seamlessly across the conversion. 

Preparation for virtualization. The operating system 

must make minimal preparations for virtualization. First, 

it must avoid using hardware that is unavailable in a 

virtual machine. If the capabilities of the virtual hard-

ware, such as support for certain instructions or platform 

devices (e.g., an IOMMU) are not available then the 

native system must take care not to use these features if it 

wishes to virtualize at some point. However, if the OS can 

operate without using devices like GPUs, they can be 

disabled just prior to conversion. Second, the OS must 

reserve resources, such as a disk partition, to contain the 

VMM. Third, the OS must run with logical devices de-

scribed above at all times. Compared to full virtualiza-

tion, these add only minimal overhead. 

5. Implementation 

We have implemented a prototype version of on-demand 

virtualization for the Linux 2.6.35 kernel using KVM as a 

virtual machine monitor. A machine must have at least 

two disk partitions: a VMM partition and a guest parti-

tion. The guest partition must have all the necessary 

drivers to run on both the physical machine and the virtual 

machine. Figure 1 shows the overall process of the con-

version.  

We modify the TuxOnIce hibernation code [3] as 

shown in Figure 2(b). Before hibernation, the kernel 

performs extra tasks to prepare for running inside a VM, 

including loading drivers for virtual devices. After the 

resume kernel is restored inside a VM, the kernel recon-

figures platform devices, rescans for PCI devices and 

updates logical devices.   

5.1. Dealing with Devices 

Each class of devices requires a slightly different solution 

for transitioning from physical to virtual hardware. 

Block devices. The device mapper provides a logical 

block device that can redirect requests to other block 

devices based on a mapping table. In order to reconnect 

file systems to the correct partition, the kernel records file 

system UUIDs for each partition before hibernation. 

When the resume kernel discovers VM disk controllers, 

new block devices will be added to the kernel device tree. 

By comparing each block device’s UUID with the pre-

viously recorded one, the kernel can find virtual devices 

corresponding to the old physical partitions and updates 

mapping tables accordingly. 

Network interfaces. We use the Linux bonding driver to 

create a logical network interface. Before hibernate, the 

bonding driver attaches only to the physical network card. 

After resume, the kernel discovers a virtual network card 

and attaches it to the bonding driver. The bonding driver 

finds that the physical device is unavailable and sends all 

packets to the virtual NIC instead. The use of bonding 

driver is inspired by work on VM live migration [18]. 

Platform devices. We modify the boot kernel, used 

during resume, to pass on the IOAPIC and ACPI timer 

configuration data to the resume kernel. However, we 

cannot reprogram PCI interrupt routing in the resume 

kernel, so instead we update the kernel’s routing tables 

with the boot kernel’s interrupt configuration.  

5.2. Preliminary Results 

Our implementation is preliminary and only supports 

one-way conversion from native to virtual execution. The 

conversion takes about 90 seconds, and active ssh/scp 

connections remain open. The majority of time is spent in 

hibernate/resume process and rebooting the machine.  

We plan to improve the conversion speed by storing 

 
Figure 2: Comparison between the hibernate/resume 

process and the virtualize process. 



 

the hibernate image in RAM and using kexec [16] to 

reboot into VMM partition since it can preserve RAM 

content. In addition, we also need to add support for 

devirtualizing by transferring a VM back to run on its 

original physical machine. We can rely on the fact that we 

only detach original physical devices from their drivers to 

make them inactive prior to conversion. This assumption 

will simplify devirtualization since we can enable the 

devices by attaching back their drivers. 

6. Related Work 

There are many approaches which try to bring in the 

benefits of virtualization without its cost. Here we list 

several ideas which try to achieve this goal.   

The first step toward on-demand virtualization was 

demonstrated by microvisors on an Alpha processor 

system [14]. However, their goal is to support online 

maintenance instead of enabling other benefits of virtua-

lization. As a result, they did not virtualize devices or 

memory, and relied instead on having extra hardware 

available.  

VMware Converter [4] is capable of cloning a physical 

machine into a VM. An agent copies data from a physical 

machine into a VM image. However, it does not include 

running state of the physical machine, such as open ap-

plications. In addition, the VM must be rebooted first to 

discover new hardware.  

Another line of work is to provide some benefits of 

virtualization without relying on a VMM. OS live mi-

gration [12] adds whole-system migration to an OS. In 

order to achieve this, each class of device must provide an 

import/export interface to facilitate the transfer of ab-

stract device state during the migration. In contrast, we 

rely on power management and logical devices because 

they require no modification to existing drivers.  

NoHype [10] uses hardware features to partition re-

sources such as processors, memory and devices between 

each guest OS. This approach allows guest OS to execute 

natively without VMM intervention most of the time. 

However, NoHype requires additional hardware support 

and does not address hardware differences in the case of 

live migration. In contrast, on-demand virtualization 

works with existing hardware, and relies on virtual 

hardware to mask device differences. 

7. Conclusion 

We propose on-demand virtualization as a mechanism for 

reaping the benefits of virtualization in environments 

where its merits do not justify for paying for its cost all 

the time. Thus, it can be useful in many cases: datacenters 

providing machines with native performance and PCs 

requiring devices that are not emulated by a VMM.  

We showed that on-demand virtualization is possible 

by implementing a prototype in Linux that can virtualize 

while retaining network connectivity. We found that 

platform devices impose a major obstacle because they 

were not designed to be reconfigured after the boot phase. 

However, retaining OS and device driver states across the 

conversion is not a major issue as hibernation and logical 

devices can be used to solve this problem.   
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