
Making Events Less Slippery With eel

Ryan Cunningham and Eddie Kohler
University of California, Los Angeles

rcunning@gmail.com, kohler@cs.ucla.edu

ABSTRACT

Event-driven programs divide program control flow into
a series of callback functions, making program behav-
ior difficult to follow. However, current program analy-
sis techniques can preserve the event model while mak-
ing it easier to read, write, debug and maintain. We de-
signed the Explicit Event Library (libeel) to be amenable
to program analysis and created tools to graphically ex-
pose control flow, verify resource safety properties, and
simplify debugging. The result sustains the advantages
of event-driven programming while adding the important
advantage of programmability.

1 INTRODUCTION

Coping with asynchronous events generated by unpre-
dictable sources, such as hardware, applications, and
remote users, is a fundamental systems problem, with
two fundamentally dual solutions [12]: threads and
event-driven programming. Despite controversy old and
new [8, 14, 18, 19], both models have their place; and
in particular, event-driven programming is here to stay.
In some contexts, such as interrupt handlers and embed-
ded systems, a connection-oriented thread model doesn’t
fit the problem or isn’t supported by underlying layers.
In others, such as Web serving, event-driven programs
achieve the best published performance [11, 17] and ex-
pose important information, such as blocking points [8].

Unfortunately, event-driven programs remain diffi-
cult to understand. Control flow is divided into many
cooperatively-scheduled callback functions, obscuring
context and programmer intent. This makes it hard to
write event-driven programs and, worse, hard to ana-
lyze and debug them when they go wrong. Although
threaded programs have their own difficulties, particu-
larly with synchronization, threading doesn’t obfuscate
programs in the same way. So are threads the only model
suitable for dependable software? Put another way, must
tools for improving event-driven programmability “ef-
fectively duplicate the syntax and run-time behavior of
threads” [19]?

We show that current program analysis techniques
can preserve the event-driven programming model while
making event-driven programs easier to read, write, de-
bug, and maintain. We designed a simple event library—
libeel, the Explicit Event Library—to be amenable to
program analysis. All relevant arguments are presented

directly to the library, rather than stored in heap struc-
tures requiring pointer analysis. Also, agroup identi-
fier argument encourages the programmer to group call-
backs dealing with the same conceptual connection, en-
abling easy discovery of the program’s logical control
flow. With the help of this library, we built tools that
graphically expose the event-driven control flow; that
verify program properties, such as that all resources al-
located on a path are freed; and that simplify debug-
ging. Two programs, crawl-0.4 [15] and plb-0.3 [5], were
ported tolibeel from the libevent library [16]. Theeel
tools helped us understand these programs and uncov-
ered several bugs, while preserving the advantages of
event-driven programming.

Our contributions arelibeel, an event notification li-
brary that facilitates readable programming and (through
its group identifiers) easy analysis, and theeelstatechart,
eelverify, andeelgdbtools built above it.

2 EVENT PROGRAMMING

This section explores some typical event-driven code
for fetching an HTTP document, demonstrating com-
mon problems with event-driven software’s readability,
writability, and debuggability. The code is in Figure 1.

First, we try to understand the code. The control path
clearly proceeds fromhttp_fetch toreadheadercb fol-
lowing a read readiness event, or totimeoutcb after a
timeout expiration. However, it is not clear what happens
following the return on line 29. One would have to read
the functionhttp_parseheader, and any functions it
calls, in order to determine the next callback in the chain,
if any. In general, determining the control flow of event-
driven programs requires reading the entire function call
graph to assemble the callback chain.

Determining the locations where files, memory, and
other resources are reclaimed also becomes a compli-
cated process. Callback functions can allocate either lo-
cal or long-lived resources. Local resource last only as
long as the callback function itself, while long-lived re-
sources are passed to the next callback as part of the con-
nection state, and thus should not be freed by the current
callback. Furthermore, one callback function can free re-
sources passed to it by a prior callback. When reading
the code, it’s difficult to tell how resources should be
categorized—and, for example, whether the absence of
a “free” function represents a memory leak.

This is made even worse by “stack ripping” [6].

1

1 // assumeuri->fd is ready for write
2 void http_fetch(struct uri *uri, eel_group_id gid) {
3 char req[1024];
4 // create the HTTP request and write it touri->fd
5 snprintf(req, sizeof(req), "%s %s HTTP/1.0\r\n" ...);
6 atomicio(write, uri->fd, req, strlen(req));
7 // wait for a read event onuri->fd or timeout
8 eel_add_read_timeout(gid, readheadercb,

timeoutcb, uri, uri->fd, HTTP_READTIMEOUT);
9 }

10 // the timeout occurred beforeuri->fd was ready to read
11 void timeoutcb(eel_group_id gid, void *arg, int fd) {
12 // clean up all resources; ends the callback chain
13 uri_free_gid((struct uri *)arg, gid);
14 }

15 // uri->fd is ready to read
16 void readheadercb(eel_group_id gid, void *arg, int fd) {
17 char line[2048];
18 struct uri *uri = arg;
19 // read some data fromuri->fd
20 ssize_t n = read(uri->fd, line, sizeof(line));
21 if (n == -1) {
22 if (errno == EINTR || errno == EAGAIN)
23 goto readmore; // wait for another read event
24 uri_free_gid(uri, gid); // real error: free and return
25 return;
26 } else if (n == 0) // ... handle other conditions
27 // ... copy unparsed header info intouri structure
28 http_parseheader(uri, gid);
29 return; // What callback is next???
30 readmore:
31 // wait for another read event or timeout
32 eel_add_read_timeout(gid, readheadercb,

timeoutcb, uri, uri->fd, HTTP_READTIMEOUT);
33 }

Figure 1: Code derived from crawl-0.4 [15] and ported from
libevent[16] to libeel showing part of a typical HTTP document fetch.

When a sequential, blocking function is modified to wait
for an event, it must move all of its relevant state infor-
mation, possibly including stack variables, to the heap
structure passed to the next callback. For example, Fig-
ure 1’s line 6 writes an HTTP request to a file descriptor
using a normal, non-blocking write. While this particu-
lar write is extremely unlikely to block in practice, true
non-blocking I/O would require that any unused portion
of req be passed on to the next callback.

Stack ripping complicates writing as well as read-
ing. Consider a programmer writing Figure 1’s code
in top-down order. Once she finishes writingread-
headercb, she might writehttp_parseheader. Un-
fortunately, this involves cleaning up some subset of
readheadercb’s state; and wheneverreadheadercb’s
state changes,http_parseheadermust change too.

Say the programmer now wishes to debug by step-
ping line by line through the source code, observing vari-
able values. She runs the program in a debugger and sets
a breakpoint at line 6 to begin the process. After step-
ping a few lines to the end ofhttp_fetch, the debug-
ger steps to the calling function—but this is the dispatch
loop. There is no convenient way to continue stepping
on to the next line of logical program flow (11 or 16).
Debuggers don’t follow the logical control flow of event-
driven programs, making stepping inconvenient.

In practice, programmers have avoided these prob-
lems primarily by turning to threads. Threads’ explicit
control flow improves programmability: Memory is more
easily managed because stack variables can be used
across blocking calls. Other resources are more easily
managed because control paths that exit the function
are more visible. Debugging is easier (assuming the de-
bugger has thread support). Programmers that choose to
use events, often for performance reasons, suffer through
with ad-hoc solutions. For instance, separate documen-
tation might be manually created to show the callback
chain; memory and resource management is most likely
done manually;printf debugging rules the day. Some
systems combine events’ cooperatively-scheduled exe-
cution model with thread-like code via automatic stack
management [6, 18]; but this may not support multiple
outstanding callbacks on the same connection, and still
requires the programmer to revalidate shared state after
each blocking call [6].

3 THE eel TOOLS

Our eel tools and a library framework attack all these
problems at their common source: the difficulty of fol-
lowing an event-driven program’s control flow. The
libeel library simultaneously facilitates event-driven pro-
gramming and program analysis: we designed the library
specifically to avoid the aliasing and state issues that typ-
ically complicate analysis of C-based programs. Never-
theless,libeelprograms are truly event-driven, not event-
based programs in threaded clothing.

The tools leveragelibeel to extract control-flow in-
formation from arbitrary event-driven programs. The re-
sults are displayed or used to verify program properties.
eelstatechartvisualizes the program’s control flow in the
form of a simple chart. Theeelverifyframework can de-
tect resource leaks and other mistakes common to event-
driven programs. Lastly, a modifiedgdb lets the pro-
grammer transparently step through the callback chain,
simplifying debugging. Each tool plays a role in the pro-
gramming process:eelstatechartin program comprehen-
sion,eelverifyin checking, andeelgdbin debugging.

Thelibeel library was initially based onlibevent[16],
another event library, although it has considerably di-
verged. Theeeltools were built using the C Intermediate
Language (CIL) framework for C program manipulation
and analysis [2], the BLAST software verification sys-
tem [1],gdb[4], and Graphviz’sdot [3].

3.1 Thelibeel interface

The libeel library, like other existing event libraries [8,
16], provides a single unified interface for registering,
canceling, and dispatching callbacks. It abstracts system
dependencies, such as the choice ofselector a more-
scalable variant [7, 13]. Figure 2 shows part of its in-

2

// Group operations
eel_group_id eel_new_group_id(void);
void eel_delete_group_id(eel_group_id gid);
// Event functions
eel_event_id eel_add_timer(eel_group_id gid, eel_callback cb, void *cb_arg, int timeout_milliseconds);
eel_event_id eel_add_read(eel_group_id gid, eel_callback cb, void *cb_arg, int fd);
eel_event_id eel_add_write(eel_group_id gid, eel_callback cb, void *cb_arg, int fd);
eel_event_id eel_add_error(eel_group_id gid, eel_callback cb, void *cb_arg, int fd);

Figure 2: Some of thelibeel interface, including showing group identifier new and delete calls and event registration functions.

terface. The event functions register a callback for an I/O
event on the given file descriptor, or for a timer that goes
off after a certain number of milliseconds. Other func-
tions combine I/O with timeout events. The design chal-
lenge was to provide a usable, minimal interface that si-
multaneously enables analysis.

libeel’s interface is simpler than some other event no-
tification libraries in that the callback functions are ex-
plicitly named for each event registration, and there is
a one to one pairing of registrations and callback calls.
libeelalso requires the programmer to specify the logical
connection to which an event applies, via “group iden-
tifier” arguments in registration calls. Explicit functions
create and destroy group identifiers. It is typically easy to
add group identifiers to an event-driven program: context
data and resources passed along the call chain are usu-
ally allocated in a single location and deallocated in an-
other; the group identifier can be created and released at
these sites as well. Group identifiers somewhat resemble
thread identifiers, although unlike threads, there can be
multiple callbacks outstanding for the same group. The
othereel tools trace group identifier values through the
program’s callbacks to extract logical code paths.

Initially, we considered usinglibeventdirectly, but
doing so proved difficult. Event registration inlibevent
requires two library calls, one to set up a parameter data
structure and one to actually register:

event_set(&ev, fd, EV_READ|EV_WRITE|EV_PERSIST,
callback, NULL);

... // analysis must check whetherev has changed
event_add(&ev, &timeout);

This allows persistent (automatically recurring) registra-
tions and multiple event types registered to the same call-
back function, and encourages persistentev structures.
For example, oneev might be initialized at the beginning
of the program, then reused liberally throughout. Thus,
whole-program alias analysis might be necessary to de-
termine the callback function registered by a particular
event_add, complicating both control flow analysis and
human understanding.

libeelavoids these issues by requiring that all param-
eters be presented as explicit arguments, and by disal-
lowing recurring registrations. The resulting one-to-one
correspondence between a single event registration and

a single callback firing decouples the semantic cases.
These interface design differences keep thelibeelseman-
tics both simple enough for program analysis and as flex-
ible aslibevent(albeit more verbose and marginally less
efficient). Porting alibeventprogram tolibeel is straight-
forward: separate out the multiple event types and persis-
tent event registrations into independent callback func-
tions and registrations. However, in cases where regis-
tration parameters are set distant from actual registra-
tions (typically because the parameter structure is reused
throughout the program), one must do whole program
reasoning to determine what events are being registered
to what callback function.

3.2 eelstatechart: visualizing the callback chain

eelstatecharthelpslibeelprogrammers better understand
a program’s control flow. Short of modifying C syntax
in a non-trivial way, asynchronous execution can best be
visualized using a graph. The chart we generate here is
equivalent to the graph described by Lauer and Needham
in 1978 [12] and the blocking graph described by von
Behren et al. [19] Nodes in aneelstatechartare labeled
with callback function names and edges with abbrevi-
ations for I/O or timer events. The purpose is to make
the program’s underlying structure more obvious, help-
ing the programmer understand the common paths and
how connections progress. Callbacks obscure even sim-
ple programs by removing context;eelstatechartrecov-
ers each callback’s context in the program.

eelstatechartperforms a static analysis; the tree of
event registrations and their associated callbacks is de-
termined while following the creation, use and release of
group identifiers through the static callgraph of the pro-
gram.eelstatechartstarts by visiting all function defini-
tions and their static function calls to build a call graph.
When alibeel call is encountered it marks the calling
function with a label indicating the operation performed.
The source of the group identifier is located and added
to the label as well. Finally, these labels are percolated
all the way up the callgraph with the group identifier
source being updated. To export the chart, the labels are
traversed from callback to callback beginning with the
program entry point.

Figure 3 shows the primaryeelstatechartfor crawl-

3

Chart g0: main - New(tmp@http.c:595)

main -g0-g1

delete

http_connectioncb -g0

W

http_connectioncb_timeout -g0

TO

dns_write

W

W

TO

W readheadercb -g0

R

timeoutcb -g0

TO

W

TO

W

dns_read

R

R

TO

http_readbody_timeout -g0

TO http_readbody -g0

RW

TO

TO

R

Figure 3: The primaryeelstatechartfor crawl-0.4 [15]. Each rectangle names a callback function. Each arrow indicates the next callback in the
chain. Arrows are labeled with abbreviations of the event causing the callback to be fired: “W” is write, for example. Arrows pointing to “delete”
indicate the end of the callback chain. Gray rectangles and arrows indicate timeout or delete paths, which typically correspond to errors.

0.4 [15], a simple Web crawler. The code from
Figure 1 appears on the right side of the figure.
http_fetch is called byhttp_connectioncb, creating
the read readiness event and timeout event seen head-
ing down and right fromhttp_connectioncb. Once in
readheadercb, the chart shows arrows indicating the
callback registrations from line 31. It also shows an ar-
row to “delete”, indicating that the callback chain can
end, in this case from a call touri_free_gid on line
24 or elsewhere. The call tohttp_parseheader on line
28 extends the callback chain tohttp_readbody or
http_readbody_timeout, which go on to repeat back
to http_readbody or end the chain. By just reading the
code it is not apparent what callbacks might be gener-
ated inside the call tohttp_parseheader; eelstatechart
clearly conveys this information.

eelstatechartwill generate an approximation of the
true chart, rather than the true chart, if an event registra-
tion uses a variable to name a callback function (rather
than a naming a callback function directly), or due to
complex use of function pointers elsewhere in the code.
This hasn’t happened in the programs we’ve converted
so far. One remaining challenge is to create a chart that
is easily read but also contains all pertinent information.
For example, it would be especially nice to show what
lines generated which events. We collect enough detail
to provide this information, but it would clutter the chart
beyond easy readability. Another challenge is visualizing
cases where more than one next callback is registered,
i.e. the control proceeds down both callback chains in an
unspecified order—a particularly flexible pattern.

3.3 eelverify: a verification framework

eelverifyis a framework for verifying properties oflibeel
programs. It provides a set of program transformations
and defined instrumentation points in anylibeel pro-
gram. For instance,eelverifycan verify that group iden-
tifiers are not leaked anywhere along the callback chain.
It first performs a simple program transformation so
that callback functions can be verified independent of
each other. Then BLAST [10] is used to instrument the
eel_group_id type, libeel calls, and callback function
returns such that if a group identifier is leaked, an error
label is reached. Other properties can be verified using a
similar approach.

Using eelverifywe found a few actual bugs (and a
few false positives) from two programs that, together,
had about 15,000 lines of uncommented C code. One
interesting bug stands out in plb-0.3 [5], an HTTP load
balancer. The offending code segment is in a callback
function, client_forward_request, executed follow-
ing a read readiness event. It then attempts to execute
the read call. On an error read result it checks forEINTR,
which indicates that a signal interrupted the read attempt.
Typically this situation is handled by waiting again for
a read readiness event, but the callback simply returns
without registering any callback or releasing resources.
Here,EINTR would result in a failure to forward HTTP
POST data from the client to the server.eelverifyfound
this bug because the group identifier passed into the call-
back function was not used or released along the call
path. It’s worth noting that this bug might be hard for an

4

automatic checker to detect [9], since different callbacks
were set on different paths; some exit points deleted the
group identifier, while others did not.

eelverify implicitly assumes thatlibeel is correct; it
uses thelibeel semantics but acts on its functions as if
they were language keywords.libeel cannot be verified
directly because it uses function pointers and complex
data structures to manage the callback dispatching. Thus,
eelverify cannot catch errors inlibeel itself. However,
under this assumption its analysis is sound, meaning it
never will report a false negative. Function pointer us-
age inside callback functions can lead to false positives,
however.

Stack-based memory management does not solve all
resource management problems; dynamic memory is
common even in threaded programs. For example, mem-
ory management does nothing to ensure that file descrip-
tors are always closed after being opened or that they are
not used after being closed.eelverifyprovides a frame-
work for verifying a broader class of resource proper-
ties, including those that follow a paired calling pattern
such as create/release, alloc/free, or open/close, within
the context of alibeel event-driven program. However,
it can currently verify properties only along a single in-
stance of the callback chain; it ignores any dependencies
between instances or between separate chains.

3.4 Debugging witheel

eelgdb’s extensions consist of a few new commands
that allow stepping line-by-line through alibeelcallback
chain. ‘Cnext’ is similar to thegdb ‘next’ command, ex-
cept that if the current line matches a pattern indicating
the addition of alibeelevent, it will create new temporary
conditional breakpoints at the entry of the next callback
functions. The breakpoints will only stop the program if
the group identifier argument equals that of the currently
active callback. Thus, program execution can continue
until the next breakpoint in the logical connection, al-
lowing for transparent stepping to the next logical point
in the program. The result is that the debugger allows
callbacks for other connections to be dispatched while it
is waiting for the next relevant event, but returns control
to the user once an event for the current connection has
triggered. The analogous situation in the threaded model
is when an I/O call blocks, the debugger executes code on
other threads while it waits for the I/O call to complete.

For example, consider debugging the code:

1 ...
2 atomicio(write, uri->fd, req, strlen(req));
3 eel_add_read(gid1, readheadercb, uri, uri->fd, 1000);
4 }
5 void readheadercb(eel_group_id gid2, void *arg, int fd) {
6 ...

Assume the program is run ineelgdb, which hits a break-
point on line 2. The user executes ‘cnext’, which causes

the debugger to step to line 3, just as ‘next’ would. When
‘cnext’ is applied to line 3, alibeel pattern matches the
line of source code, extracting the expressiongid1 and
the identifierreadheadercb. (As with the othereeltools,
eelgdbdoes not currently handle function pointer usage
in event registrations.) Next it evaluatesgid1’s value at
line 3 (e.g.0x007A224F) and sets a conditional break-
point as follows:tbreak readheadercb when (gid2
== 0x007A224F). Then it steps over line 3 to line 4. The
user can then ‘continue’ to allow the program to proceed
or step back to the calling function. Once the program
is continued, if the read event is triggered on the same
group identifier, thelibeel dispatch loop will callread-
headercb and the breakpoint on line 5 will hit. The user
then proceeds debugging the same instance.

4 RELATED WORK

In 1978, Lauer and Needham proved that threads and
events are duals [12]. However, most researches be-
lieve that one or another is better. Ousterhout argued
that threads are a bad idea because they perform poorly,
and concurrency issues make them error-prone [14].
Von Behren et al. argue, in contrast, that event-based
programs are too difficult to write, for the reasons we
have explained [19]. They therefore aimed to improve
the performance of threads to match that of events;
Capriccio’s compiler analyses and runtime techniques
change a threaded program’s runtime behavior into that
of a cooperatively-scheduled event-driven program [18].
Even here, events and threads are dual: events need no
compiler help for performance, since they perform well
already; instead, we use analyses andstatic techniques
to improve the programmability of events to match that
of threads (or, arguably, better that of preemptively-
scheduled threads, because there are no concurrency is-
sues). Adya et al. named “stack ripping”, identified it as
a major issue with event-driven programming, and intro-
duced a mechanism for automatically managing multiple
stacks [6]. Thelibeel library leaves the user to manage
the stack manually, and the existingeel tools address the
problems that result.Eel-like tools for a system with au-
tomatic stack management would address its problems
instead—for instance, by checking that any stack copies
of global state are revalidated after each blocking call.

Several projects focus on building fast web servers,
or even fair web servers, using events [11, 17] or a com-
bination of events and threads, as in SEDA [20]. Dabek
et al. describe a C++ library,libasync, for building ro-
bust event-driven software [8].libasync primarily ad-
dresses callback safety by using C++ templates to cross-
check callback function types and context data. It also
adds reference-counted objects to ameliorate some re-
source management issues. We focused on enabling and
building static tools that check safety issues and facili-

5

tate program clarity; reference counting and type check-
ing would be complementary.

5 CONCLUSION

Theeellibrary and program-analysis tools help program-
mers evade common problems of event-driven programs
while remaining inside the event-driven model. We are
working on further improvements to visualization to dif-
ferentiate success and error execution paths, and on ver-
ifying other properties such as proper file descriptor us-
age. We are also working on a program transformation,
in conjunction with modifications to BLAST, that would
allow verification using regular BLAST specifications,
instead of those phrased to verify properties of callback
functions independent of each other. This would let us
verify properties that require simultaneous analysis of
more than one callback. As well, collecting profiling in-
formation tagged with group identifiers could aid in de-
bugging resource bottlenecks inlibeel programs. Even
now, however, theeel tools make it easier to read, write,
debug and maintain event-driven programs.

ACKNOWLEDGEMENTS

We gratefully acknowledge Rupak Majumdar for discus-
sions and BLAST aid, and the anonymous reviewers for
helpful comments. This material is based upon work sup-
ported by the National Science Foundation under Grant
No. 0427202.

REFERENCES

[1] BLAST: Berkeley Lazy Abstraction Software Verifica-
tion Tool. URLhttp://www-cad.eecs.berkeley.edu/
∼rupak/blast/.

[2] CIL—Infrastructure for C program analysis and transfor-
mation. URLhttp://manju.cs.berkeley.edu/cil/.

[3] Graphviz—graph visualization software. URLhttp://
graphviz.org/.

[4] GDB: The GNU Project Debugger. URLhttp://www.
gnu.org/software/gdb/gdb.html.

[5] PLB—Pure Load Balancer: A free high-performance load
balancer for Unix. URLhttp://plb.sunsite.dk/.

[6] A. Adya, J. Howell, M. Theimer, B. Bolosky, and
J. Douceur. Cooperative task management without man-
ual stack management. InProceedings of the General
Track: 2002 USENIX Annual Technical Conference, June
2002.

[7] G. Banga, J. C. Mogul, and P. Druschel. A scalable and
explicit event delivery mechanism for UNIX. InProc.
1999 USENIX Annual Technical Conference, pages 253–
265, Monterey, California, June 1999.

[8] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and
R. Morris. Event-driven programming for robust soft-
ware. In Proceedings of the 2002 SIGOPS European
Workshop, September 2002.

[9] D. Engler, D. Yu Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. InProc. 18th ACM Symposium
on Operating Systems Principles, pages 57–72, Château
Lake Louise, Alberta, Canada, Oct. 2001.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with BLAST. InProceedings of the
Tenth International Workshop on Model Checking of Soft-
ware (SPIN), pages 235–239. Lecture Notes in Computer
Science 2648, Springer-Verlag, 2003.

[11] M. Krohn. Building secure high-performance web ser-
vices with OKWS. InProc. 2004 USENIX Annual Tech-
nical Conference, Boston, Massachusetts, June 2004.

[12] H. C. Lauer and R. M. Needham. On the duality of oper-
ating system structures. InSecond International Sympo-
sium on Operating Systems, pages 408–423. INRIA, Oc-
tober 1978.

[13] J. Lemon. Kqueue: A generic and scalable event noti-
fication facility. In Proceedings of the FREENIX Track
(USENIX-01), June 2001.

[14] J. K. Ousterhout. Why threads are a bad idea (for most
purposes). Presentation at the 1996 USENIX Annual
Technical Conference, Jan. 1996.

[15] N. Provos. crawl—a small and efficient HTTP crawler.
URL http://www.monkey.org/∼provos/crawl/.

[16] N. Provos. libevent—an event notification library. URL
http://www.monkey.org/∼provos/libevent/.

[17] Y. Ruan and V. Pai. Making the “box” transparent: Sys-
tem call performance as a first-class result. InProc. 2004
USENIX Annual Technical Conference, Boston, Mas-
sachusetts, June 2004.

[18] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable threads for Internet ser-
vices. InProc. 19th ACM Symposium on Operating Sys-
tems Principles, pages 268–281, Bolton Landing, Lake
George, New York, Oct. 2001.

[19] R. von Behren, J. Condit, and E. Brewer. Why events
are a bad idea (for high-concurrency servers). InProc.
HotOS-IX: The 9th Workshop on Hot Topics in Operating
Systems, Lihue, Hawaii, May 2003.

[20] M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable Internet services. In
Proc. 18th ACM Symposium on Operating Systems Prin-
ciples, pages 230–243, Château Lake Louise, Alberta,
Canada, Oct. 2001.

6

