
We Crashed, Now What?

Cristiano Giuffrida Lorenzo Cavallaro
Andrew S. Tanenbaum

Vrije Universiteit Amsterdam

6th Usenix Workshop on Hot Topics in System Dependability
October 3, 2010, Vancouver, BC, Canada

1
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum





OS Dependability Threats

3
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



OS Dependability Threats

3
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



OS Dependability Threats

3
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Are Core Components Safe?

”We’re getting bloated and huge.
Yes, it’s a problem.

[. . .] I’d like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009

4
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Are Core Components Safe?

”We’re getting bloated and huge.

Yes, it’s a problem.
[. . .] I’d like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009

4
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Are Core Components Safe?

”We’re getting bloated and huge.
Yes, it’s a problem.

[. . .] I’d like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009

4
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Are Core Components Safe?

”We’re getting bloated and huge.
Yes, it’s a problem.

[. . .] I’d like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009

4
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Are Core Components Safe?

”We’re getting bloated and huge.
Yes, it’s a problem.

[. . .] I’d like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009

4
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



High-coverage Crash Recovery

Rapid evolution and huge size cause more bugs

Crash recovery solution with smaller TCB needed

Whole-OS crash recovery

How?

1. Extend existing work on isolated subsystems to the entire OS
2. Design a new high-coverage crash recovery infrastructure

5
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



High-coverage Crash Recovery

Rapid evolution and huge size cause more bugs

Crash recovery solution with smaller TCB needed

Whole-OS crash recovery

How?

1. Extend existing work on isolated subsystems to the entire OS
2. Design a new high-coverage crash recovery infrastructure

5
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



High-coverage Crash Recovery

Rapid evolution and huge size cause more bugs

Crash recovery solution with smaller TCB needed

Whole-OS crash recovery

How?

1. Extend existing work on isolated subsystems to the entire OS

2. Design a new high-coverage crash recovery infrastructure

5
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



High-coverage Crash Recovery

Rapid evolution and huge size cause more bugs

Crash recovery solution with smaller TCB needed

Whole-OS crash recovery

How?

1. Extend existing work on isolated subsystems to the entire OS
2. Design a new high-coverage crash recovery infrastructure

5
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Isolated Subsystems ? Entire OS

Work on extensions and drivers

e.g., Safedrive, Nooks, Minix 3

Filesystems

e.g., Membrane

Assume isolated untrusted parties with well-defined interfaces

Several recoverer-recoveree pairs to scale to the entire OS

Complex and hard-to-maintain recovery infrastructure

High exposure of the recovery code to the programmer

. . . it is like a dog chasing its tail!

6
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Isolated Subsystems ? Entire OS

Work on extensions and drivers

e.g., Safedrive, Nooks, Minix 3

Filesystems

e.g., Membrane

Assume isolated untrusted parties with well-defined interfaces

Several recoverer-recoveree pairs to scale to the entire OS

Complex and hard-to-maintain recovery infrastructure

High exposure of the recovery code to the programmer

. . . it is like a dog chasing its tail!

6
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Emerging High-coverage Solutions

Shadow kernel vs Pure instrumentation
e.g., Otherworld e.g., Recovery Domains

Best-effort
(weak failure model)

Heavyweight
(high complexity)
(poor performance)
(poor scalability)

7
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Emerging High-coverage Solutions

Shadow kernel vs Pure instrumentation
e.g., Otherworld e.g., Recovery Domains

Best-effort
(weak failure model)

Heavyweight
(high complexity)
(poor performance)
(poor scalability)

7
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Emerging High-coverage Solutions

Shadow kernel vs Pure instrumentation
e.g., Otherworld e.g., Recovery Domains

Best-effort
(weak failure model)

Heavyweight
(high complexity)
(poor performance)
(poor scalability)

7
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



WWW: What We Want

8
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



WWW: What We Want

High coverage

8
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



WWW: What We Want

Low complexity

8
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



WWW: What We Want

Reasonable performance and scalability

8
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



WWW: What We Want

Good maintainability

8
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



WWW: What We Want

Address the many challenges of the crash
recovery problem

8
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Problem — I

Crash detection

Detect crashes proactively or reactively

Isolate crashes so they do not disrupt the recovery process

State transfer

Create a new execution context to restart execution

Transfer the state from the old execution context

State consistency

Restore a stable and consistent state in the new context

Allow for deterministic execution upon restart

9
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Problem — I

Crash detection

Detect crashes proactively or reactively

Isolate crashes so they do not disrupt the recovery process

State transfer

Create a new execution context to restart execution

Transfer the state from the old execution context

State consistency

Restore a stable and consistent state in the new context

Allow for deterministic execution upon restart

9
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Problem — I

Crash detection

Detect crashes proactively or reactively

Isolate crashes so they do not disrupt the recovery process

State transfer

Create a new execution context to restart execution

Transfer the state from the old execution context

State consistency

Restore a stable and consistent state in the new context

Allow for deterministic execution upon restart

9
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Problem — II

State dependency tracking

Preserve state dependencies among different contexts

Allow for a globally coherent state upon restart

State corruption

Detect arbitrary data corruption

Attempt to recover from arbitrary data corruption

Restart

Determine a safe execution point to resume operation

Attempt to avoid further crashes

10
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Problem — II

State dependency tracking

Preserve state dependencies among different contexts

Allow for a globally coherent state upon restart

State corruption

Detect arbitrary data corruption

Attempt to recover from arbitrary data corruption

Restart

Determine a safe execution point to resume operation

Attempt to avoid further crashes

10
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Problem — II

State dependency tracking

Preserve state dependencies among different contexts

Allow for a globally coherent state upon restart

State corruption

Detect arbitrary data corruption

Attempt to recover from arbitrary data corruption

Restart

Determine a safe execution point to resume operation

Attempt to avoid further crashes

10
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Our Approach

Combine OS design and lightweight instumentation

OS Design

Reduce complexity at recovery time

Good performance and scalability

Lightweight Compiler-based Instrumentation

High coverage and component-agnostic recovery

Good maintainability and evolvability

11
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Our Approach

Combine OS design and lightweight instumentation

OS Design

Reduce complexity at recovery time

Good performance and scalability

Lightweight Compiler-based Instrumentation

High coverage and component-agnostic recovery

Good maintainability and evolvability

11
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Our Approach

Combine OS design and lightweight instumentation

OS Design

Reduce complexity at recovery time

Good performance and scalability

Lightweight Compiler-based Instrumentation

High coverage and component-agnostic recovery

Good maintainability and evolvability

11
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



OS Architecture

AppApp AppApp . . . App

NETSCHVFS VM . . . PM

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

We break down the OS into several userspace components

Multiserver microkernel architecture based on message-passing

12
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

We rely on an event-driven model

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Events trigger execution of the task loop

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Idempotent messages possible within the task loop

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Idempotent messages possible within the task loop

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Idempotent messages possible within the task loop

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Push non-idempotent messages to the end

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Back to the top of the loop!

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Programming Model

O.S.
Component

Pending interactions are remembered in the state

13
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



State Management

Identify state of data and state of execution

Both well-defined and consistent at the top of the task loop

The top of the loop is a local stable state point

Global state consistency by design

14
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Instrumentation-based Recovery

The task loop is the recovery window

Lightweight instrumentation to track local state changes

Used by the recovery code to revert to the last stable state

Different strategies possible

15
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Our Implemented Instrumentation

Maintain shadow state regions

Track dynamic memory allocations

Track changes on state objects

Use alias analysis to detect changes at the object granularity

Automatically commit changes at the end of the task loop
(i.e., it synchronizes shadow and main state regions)

16
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . . PM PMR

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . . PM PMR
#PF

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

An OS component crashes: the system manager
detects the crash and initiates recovery

(the microkernel actually signals the system manager)

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . . PMR

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

The system manager selects a new replica
and tells the microkernel

(virtual ids make transparent recovery possible!)

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . . PMR

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

PM

The system manager yields control to the
new replica for state transfer. . .

(libary-based recovery code starts executing. . . )

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . . PMR

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

PM

. . . the component is brought back to
the last stable state and resumes operation

(shadow and main state regions are synced!)

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . .

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

The system manager cleans up the dead replica
(the new replica may even be involved in the process!)

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . .

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

5

The system manager spawns a new replica (if needed)
(per-component recovery policies apply)

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



The Crash Recovery Process

AppApp AppApp . . . App

NETSCHVFS VM . . .

NDDHDDPRN SND . . . RS

Microkernel

R
3

R
0

1

1

PM

2
2

PM

3

PM PM

4

PMR PM

The system manager spawns a new replica (if needed)
(per-component recovery policies apply)

The system keeps running
as nothing bad ever happened!

17
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Prototype

Implemented on top of Minix 3

Restructured OS processes to fit our event-driven model

Instrumentation implemented as a series of LLVM passes

Successfully recovered even the most critical components

Early experiments confirmed key properties of our design

18
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Scalability Properties

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o
rm

a
liz

e
d
 R

e
la

ti
ve

 O
v
e
rh

e
a
d

N

POSIX Suite
Postmark

19
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Summary

A new high-coverage approach to OS crash recovery

Combines OS design and compiler-based instrumentation

Low complexity, good performance, scalability, maintainability

No heavy burden for the OS programmer

Addresses many of the crash recovery challenges efficiently

20
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



Future Work

Finer-grained instrumentation to track the state

Realistic fault injection scenarios

Experiment and evaluate restart strategies

Recover from state corruption

Per-component recovery policies

21
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum



We Crashed, Now What?

Thank you!
Any questions?

Cristiano Giuffrida, Lorenzo Cavallaro, Andy Tanenbaum
{giuffrida,sullivan,ast}@cs.vu.nl

Vrije Universiteit Amsterdam


	Motivation
	Existing Approaches
	The Crash Recovery Problem
	Our Approach
	Current Results
	Summary
	Questions

