We Crashed, Now What?

Cristiano Giuffrida Lorenzo Cavallaro
Andrew S. Tanenbaum

ke

Vrije Universiteit Amsterdam

6" USENIX Workshop on Hot Topics in System Dependability
October 3, 2010, Vancouver, BC, Canada E
o
1

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

A problem has been detected and windows has been shut down to prevent damage
to your computer.

DRIVER_IRQL_NOT_LESS_OR_EQUAL

If this is the first time you've seen this Stop error screen,
restart your computer, If this screen appears again, follow
these steps:

Check to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use safe Mode to remove or disable components, restart
your computer, press F8 to select Advanced Startup options, and then
select safe Mode.

Technical ‘information:

%% STOP: Ox00000001 (OX0000000C, Ox00000002, O0x00000000, OXF86B5A89)

Bk gv3.sys - Address F86B5AR89 base at F86B5000, DateStamp 3dd99leb

Beginning dump of physical memory

Physical memory dump complete.

contact your system administrator or technical support group for further
assistance.

OS Dependability Threats

functions 1 human
layers ey L - 14 w SEIEL “?etworkl ng interface
processes memory access files & directories sockets access HI char devices
sy egeeve syt s
user spa:e e vk masz e
interfaces ~r _-3»« ...,L..
5 r ‘sys_nanosleep

virtual

o

Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

We Crashed, Now What?
)

OS Dependability Threats

functions 1 human
layers o pr . Yy . storage Msletworkl ng
system interfaces
Inutscalen systam fles

memory access
S
user space it i

interfaces “:rl:l:- |_

sys_reboot

interface
Hl char devices

files & directories sockets access

75 socketcall
sys_socket

virtual

We Crashed, Now What?
-

Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

) 3

OS Dependability Threats

human
interface

functions
layers

storage networking
s — — = e — — - e
: | ory access Iﬁlu&dlnmrln S

access 3 tcall
user space “niecst o o
interfaces i

(2

C
[Dg

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

e

Are Core Components Safe?

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

Are Core Components Safe?

"We're getting bloated and huge.

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

Are Core Components Safe?

"We're getting bloated and huge.
Yes, it's a problem.

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

Are Core Components Safe?

"We're getting bloated and huge.
Yes, it's a problem.
[...] I'd like to say we have a plan.”

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

Are Core Components Safe?

"We're getting bloated and huge.
Yes, it's a problem.
[...] I'd like to say we have a plan.”

Linus Torvalds on the Linux kernel, 2009
4

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

High-coverage Crash Recovery

#* Rapid evolution and huge size cause more bugs
#* Crash recovery solution with smaller TCB needed

* Whole-OS crash recovery

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

High-coverage Crash Recovery

#* Rapid evolution and huge size cause more bugs
#* Crash recovery solution with smaller TCB needed

* Whole-OS crash recovery

How?

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
(5

High-coverage Crash Recovery

#* Rapid evolution and huge size cause more bugs
#* Crash recovery solution with smaller TCB needed

* Whole-OS crash recovery

How?

1. Extend existing work on isolated subsystems to the entire OS

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
(5

High-coverage Crash Recovery

#* Rapid evolution and huge size cause more bugs
#* Crash recovery solution with smaller TCB needed

* Whole-OS crash recovery

How?

1. Extend existing work on isolated subsystems to the entire OS
2. Design a new high-coverage crash recovery infrastructure

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
(5

Isolated Subsystems % Entire OS

* Work on extensions and drivers
* e.g., Safedrive, Nooks, Minix 3

*

Filesystems
* e.g., Membrane

*

Assume isolated untrusted parties with well-defined interfaces

»

Several recoverer-recoveree pairs to scale to the entire OS
#* Complex and hard-to-maintain recovery infrastructure

»

High exposure of the recovery code to the programmer

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
(6

Isolated Subsystems % Entire OS

* Work on extensions and drivers

* egf

*

Filesys
* eg

*

Assum

Severd
» Col

»

\

\\@)/

.it is like a dog chasing its tail!

»

We Crashed, Now What?
priisis GRSV AL TS

Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

J

nterfaces

re OS

High exposure of the recovery code to the programmer

be

Emerging High-coverage Solutions

Shadow kernel vs Pure instrumentation
e.g., Otherworld e.g., Recovery Domains

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

Emerging High-coverage Solutions

Shadow kernel vs Pure instrumentation
e.g., Otherworld e.g., Recovery Domains

* Best-effort
(weak failure model)

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

Emerging High-coverage Solutions

Shadow kernel vs Pure instrumentation
e.g., Otherworld e.g., Recovery Domains

* Best-effort * Heavyweight
(weak failure model) (high complexity)
(poor performance)
(poor scalability)

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

WWW: What We Want

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

WWW: What We Want

.
High coverage E

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

(8

WWW: What We Want

e

Low complexity

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

WWW: What We Want

Reasonable performance and scalability

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

WWW: What We Want

SO\
~

Good maintainability

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

WWW: What We Want

» \ \ Qo
\/\ 0 R Q
L9

Address the many challenges of the crash
recovery problem g z
o

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Crash Recovery Problem — |

Crash detection

Detect crashes proactively or reactively

#* |solate crashes so they do not disrupt the recovery process

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

The Crash Recovery Problem — |

Crash detection

Detect crashes proactively or reactively

#* |solate crashes so they do not disrupt the recovery process

State transfer

» Create a new execution context to restart execution

» Transfer the state from the old execution context

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

be

The Crash Recovery Problem — |

Crash detection

Detect crashes proactively or reactively

#* |solate crashes so they do not disrupt the recovery process

State transfer

» Create a new execution context to restart execution

» Transfer the state from the old execution context

State consistency

% Restore a stable and consistent state in the new context

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

#* Allow for deterministic execution upon restart %
m
O 9

The Crash Recovery Problem — Il

State dependency tracking

Preserve state dependencies among different contexts

Allow for a globally coherent state upon restart

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

10

The Crash Recovery Problem — Il

State dependency tracking

Preserve state dependencies among different contexts

Allow for a globally coherent state upon restart

State corruption

#* Detect arbitrary data corruption

* Attempt to recover from arbitrary data corruption

10

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Crash Recovery Problem — Il

State dependency tracking
#* Preserve state dependencies among different contexts

Allow for a globally coherent state upon restart

State corruption
#* Detect arbitrary data corruption

* Attempt to recover from arbitrary data corruption

Restart
* Determine a safe execution point to resume operation

*# Attempt to avoid further crashes

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

|

I

o>

Our Approach

[Combine OS design and lightweight instumentation]

11

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

Our Approach

[Combine OS design and lightweight instumentation]

OS Design

Reduce complexity at recovery time

#* Good performance and scalability

11

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

Our Approach

[Combine OS design and lightweight instumentation]

OS Design

Reduce complexity at recovery time

#* Good performance and scalability

Lightweight Compiler-based Instrumentation

* High coverage and component-agnostic recovery

* Good maintainability and evolvability z
o
11

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

OS Architecture

& [APPJ[APPJ[APPJ[APPJ
—
(vFs) (scH) (NET) (vM)
e {
(PRN J(HDD } [NDD J { SND
_____________ i s U P
&2 [Microkernel

* \We break down the OS into several userspace components
* Multiserver microkernel architecture based on message-passing V
o>

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

C— 12

The Programming Model

\
II 0.S.)
\ Component ®

We rely on an event-driven model

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

13

The Programming Model

\
II 0.S.)
\ Component ®

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

Events trigger execution of the task loop E
o
13

The Programming Model

J 0.s.
|
\ Component ®

Idempotent messages possible within the task loop E
o>

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Programming Model

! 0.s.
\ Component

Idempotent messages possible within the task loop E
o>

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Programming Model

Idempotent messages possible within the task loop

We Crashed, Now What?

Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Programming Model

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

Push non-idempotent messages to the end E
o>
13

The Programming Model

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

Back to the top of the loop! E
o>
13

The Programming Model

\
II 0.S.)
\ Component ®

Pending interactions are remembered in the state

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

13

State Management

Identify state of data and state of execution
Both well-defined and consistent at the top of the task loop
The top of the loop is a local stable state point

® ® ® »

Global state consistency by design

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

14

Instrumentation-based Recovery

* The task loop is the recovery window
#* Lightweight instrumentation to track local state changes
Used by the recovery code to revert to the last stable state

» Different strategies possible

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

15

Our Implemented Instrumentation

Maintain shadow state regions
Track dynamic memory allocations
Track changes on state objects

Use alias analysis to detect changes at the object granularity

® O ® ® ®

Automatically commit changes at the end of the task loop
(i.e., it synchronizes shadow and main state regions)

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

16

The Crash Recovery Process

& [App} [App} [AppJ [AppJ i
[VFs] [SCHj [NET] [VMj .
(PrN) (HDD) (NDD) ((SND)
e ok)
ke
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
17

The Crash Recovery Process

& [App][App][App][App] App
(vFs) (scH) (NET) (vm)
..o oo (oo (swo) - {8
g2 Microkernel

An OS component crashes: the system manager
detects the crash and initiates recovery
(the microkernel actually signals the system manager) V
17

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Crash Recovery Process

& [App][App][App][App] App
[VFs] [SCHj [NET] [VMj
(PrRN) (HDD J(NDD) (SND) -+ ,
_________________________________ o Y N
£ [Microkernel
The system manager selects a new replica
and tells the microkernel
(virtual ids make transparent recovery possible!) V
o
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
17

The Crash Recovery Process

& [App][App][App][App] App
(vFs) (scH) (NET) (vm) ' PM |
3
EDCDEDER < &
£ [Microkernel]
The system manager yields control to the
new replica for state transfer. ..
(libary-based recovery code starts executing. . .) V
o
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
17

The Crash Recovery Process

& [App][App][App][App] App
(vFs) (scH) (NET) (vm) ' PM |
3
EDCDEDER < &
£ [Microkernel]
...the component is brought back to
the last stable state and resumes operation
(shadow and main state regions are synced!) V
o
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
17

The Crash Recovery Process

& [App][App][App][App] App
(vFs) (scH) (NET) (vm) M
|)G -
g2 Microkernel)

The system manager cleans up the dead replica
(the new replica may even be involved in the process!) E
o>

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
17

The Crash Recovery Process

2 (F) () (Ae) () (B
(ves) (se) (wer) () - [Joom)
.. ey (soo) (won) (sho) --- Sl L
2 | Microkernel)

The system manager spawns a new replica (if needed)

(per-component recovery policies apply) E
o
17

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

The Crash Recovery Process

[App][App][App][App] App

R3

The system keeps running
as nothing bad ever happened!

The system manager spawns a new replica (if needed)
(per-component recovery policies apply)

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

17

Prototype

Implemented on top of MINIX 3
Restructured OS processes to fit our event-driven model
Instrumentation implemented as a series of LLVM passes

Successfully recovered even the most critical components

®* % ®* ® ®

Early experiments confirmed key properties of our design

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

18

Scalability Properties

POSIX Suite m——
1 Postmark ——

k=
g 09
<
[
>
(@)
[
Z 08
©
[
o
hel
N
= 0.7
E
o
P4

0.6

0.5 —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 V
N
o
We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum
.] 19

Summary

A new high-coverage approach to OS crash recovery
Combines OS design and compiler-based instrumentation
Low complexity, good performance, scalability, maintainability
No heavy burden for the OS programmer

®* % ®* ® ®

Addresses many of the crash recovery challenges efficiently

20

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

Future Work

Finer-grained instrumentation to track the state
Realistic fault injection scenarios
Experiment and evaluate restart strategies

Recover from state corruption

®* % ®* ® ®

Per-component recovery policies

We Crashed, Now What? Cristiano Giuffrida, Lorenzo Cavallaro, Andrew S. Tanenbaum

21

We Crashed, Now What?

Thank youl!
Any questions?

Cristiano Giuffrida, Lorenzo Cavallaro, Andy Tanenbaum
{giuffrida,sullivan,ast}@cs.vu.nl

ke

Vrije Universiteit Amsterdam

	Motivation
	Existing Approaches
	The Crash Recovery Problem
	Our Approach
	Current Results
	Summary
	Questions

