A Rising Tide Lifts All Boats: How Memory Error Prediction and Prevention Can Help with Virtualized System Longevity

Yuyang Du, Hongliang Yu, Yunhong Jiang*
Yaozu Dong*, Weimin Zheng
Tsinghua University
Intel Corporation*

Outline

- Background and motivation
 - Memory errors in the wild
 - Virtualized systems
- Our approach
 - Memory error characteristics
 - Prediction and prevention model
- System level design
- Conclusion and future work

Memory Error (1)

Memory in computer

Memory Error (2)

- Memory error causes
 - Service unavailable, data loss, etc.
 - Reboot and replacement
- Memory error in the wild
 - Make up the largest fraction of system failures among all possible reasons (both software and hardware)
 - Take up the top place of component replacement

Memory Error (3)

- Conventional solutions
 - Fault tolerance
 - adding certain form of redundancy (by hardware or software) to the system is necessary
 - Error Correction Code (ECC)
 - detecting and correcting one bit error
- Difficult to extensively apply or not enough to commodity computers in datacenters

Virtualized Systems (1)

Virtual machines and Hypervisor

Physical machine, OS, and applications

VMs and Hypervisor

Virtualized Systems (2)

- A cloud business model
 - The providers and consumers adopt a "paying for what you use policy"
 - The provider guarantees some service level agreement, such as system uptime percentage
 - The consumers use and pay for the provisioned resources
 - Lack the opportunity to protect them self from hardware failure, such as memory errors
- VM based high availability and fault tolerance
 - VM state replication, and record and replay

Virtualized Systems (3)

- Vulnerabilities in virtualization
 - Higher utilization due to server consolidation and live migration leads to an increase in memory error rate
 - Many proprietary and legacy OSes can not handle memory errors
 - The "eggs in a basket" effect needs hypervisor to be more robust and resilient to system failures
 - Memory errors can be used to attack system security

Our Goal

- Cost-effective
 - Can be applied to large scale
- Best-effort
 - Not as complete as fault tolerance
 - Alleviate the problem
- Virtualization-aware
 - Small footprint
 - Transparent to OS and applications

Outline

- Background and motivation
 - Memory errors in the wild
 - Virtualized systems
- Our approach
 - Memory error characteristics
 - Prediction and prevention
- System design
- Conclusion and future work

Our Solution

- This paper proposes memory error prediction and prevention model
 - Predict using memory error characteristics and log events
 - Prevent using page/DIMM replacement and live migration

Memory error category

- Soft error vs. hard error
 - Soft errors randomly flip memory bits but without permanent physical damage (e.g., particles strike on the silicon chip)
 - Hard errors repeatedly corrupt bits due to device defect (e.g., device wear-out)
- Correctable vs. uncorrectable
 - If the errors can be corrected by hardware (i.e., Error Correcting Codes), then software is oblivious to such events and can continue running
 - if the errors can not be corrected, system failure
 is unavoidable.

Memory error characteristics

Memory error characteristics

- Hard errors occur more often than soft errors, which are unfortunately concerned by most previous studies
- Strong correlation between correctable and uncorrectable errors
- High system utilization (CPU and memory) increase memory errors
- [1] X. Li, K. Shen, M. Huang, and L. Chu. A memory soft error measurement on production systems. USENIX ATC, 2007.
- [2] B. Schroeder, E. Pinheiro, and W. Weber. Dram errors in the wild: A large-scale field study. In SIGMETRICS, 2009

Memory subsystem virtualization

Physical page frame redirection

Memory subsystem virtualization

- MMU Virtualization
 - Direct page table
 - Virtual TLB
 - Shadow page table
 - Hardware assisted translation tables (i.e., Extended page table)
 - Guest can have full control over its page tables and events
 - VMM controls Extended Page Tables

Outline

- Background and motivation
 - Memory errors in the wild
 - Virtualized systems
- Our approach
 - Memory error characteristics
 - Prediction and prevention
- System design
- Conclusion and future work

System Design (1)

System overview

System Design (2)

- Components
 - Event Collector
 - Error Log
 - Utilization Monitor
 - Risk Assessor
 - Error Prediction
 - Hotspot Avoidance
 - Operator
 - Page replacement
 - DIMM replacement
 - Live migration

System Design (3)

- Unexpected uncorrectable errors
 - The memory is probably owned by guest VMs, because hypervisor has very small footprint
 - Destroys the guest VM and restarts it, or invokes guest's error handler to deal with the error by passing a simulated MCE event to the guest
 - If the hypervisor owns the faulty memory, however error handler will probably have no choice but reboot the system

System Design (4)

- Hardware requirement
 - Intel Machine Check Architecture (MCA)
 - Corrected Machine Check Interrupt (CMCI)
 - Machine Check Exception (MCE)

System Design (5)

- Implementing on Xen
 - Replacing a physical page for a guest VM requires the updating of all the page mappings from guest physical address to host physical address, and vice versa
 - The overhead of page replacement is very small, especially when Expanded Page Table (EPT) is used

Outline

- Background and motivation
 - Memory errors in the wild
 - Virtualized systems
- Our approach
 - Memory error characteristics
 - Prediction and prevention
- System design
- Conclusion and future work

Conclusion

- This paper advocates predicting memory errors and preventing them from affecting system longevity by using memory error characteristics and taking as input the error events and system utilization.
- We focus on virtualized systems, and try to make it cost-effective to be applied to datacenters easily

Future Work

We are still on the way to fulfill our work and collaborate with industry to take quantitative measurements to fine-tune the predictive model and evaluate the effects

Thanks!

Questions?

