Focus Replay Debugging Effort
on the Control Plane

Gautam Altekar and lon Stoica
University of California, Berkeley




Debugging Software Is Hard

Debugging datacenter software is really hard

Datacenter software? Hard?
Large-scale, Non-determinism
data-intensive, Can'treproduce
distributed |apps failures

Can‘t cyclically

lﬁ 58 debug

How can we reproduce non-deterministic
failures in datacenter software?



Deterministic Replay Systems

Generate replica of original run, hence failures

Non-deterministic data

Non-deterministic data
(e.g., inputs, thread interleaving)

Why deterministic replay?
Model checking, testing, verification

Goal: find errors pre-production
Can’t catch all errors
Can’t reproduce production failures



Requirements for Datacenter

Replay

Always-on production use
< 5% slowdown

Log no more than traditional console logs (100
Kbps)

High fidelity replay
Reproduce the most difficult of non-deterministic
bugs



Related Work

None suitable for the datacenter

FDR, Capo, No Yes
CoreDet

VMWare, Yes No
PRES, ReSpec

ODR, ESD, Yes No
SherLog

R2 Yes No



Build a Data Center Replay System

Target Design for
Record efficiently Large-scale, data-
~20% overhead, 100 intensive,

KBps distributed apps
Highreplay fidelity o
Replays difficult iﬁ TeasE

bugs Linux/x86



Outline

Overview
Approach
Testing the
Hypothesis
Preliminary
Results
Ongoing
Work




Control Plane Determinism:

Intuition

For debugging, not necessary to produce
iIdentical run

Often suffices to produce any run that has
same control-plane behavior



The Control Plane?

Datacenter apps have two components

1. Control-plane code 2. Data-plane code
Manages the data Processes the data
Complicated, Low traffic Simple, High traffic
» Distributed data placement » Checksum verification

» Replica consistency » String matching



Our Hypothesis

Relax guarantees to control-plane
determinism

Meet all requirements for a practical
datacenterreplay system



Outline

Overview
Approach
Testing the
Hypothesis
Preliminary
Results
Ongoing
Work



Testing Criteria

Experimentally show the control plane has:
1. Higher bug rates, by far
Most bugs must stem from control plane code
Implies high fidelity replay
2. Lower data rates, by far
Consumes and generates very little /O
Implies low overhead recording



Test Results - Preview

Control Plane Data Plane

99% 1% 1% 99%

Bug Rate Data Rate Bug Rate Data Rate

Evidence support the hypothesis



Outline

Overview
Hypothesis
Testing the
Hypothesis

How?
Preliminary
Results
Ongoing
Work



Challenge: Classification

To make statements about planes, we must
first identify them
Goal: Classify code as control and data plane
code

Hard: tied to program semantics
Obvious approach: Manually identify plane
code

Error prone and unreliable



Approach: Semi-Automated

Classification

Manually identify user-data files

User data? E.q., file uploaded to HDFS
Automatically identify static instructions

tainted by user data

Taint-flow analysis
Instructions tainted by user data are in data

plane; others are in control plane



Taint Flow Analysis

Instruction-level
Works with apps written in arbitrary languages
Dynamic
Easier to get accurate results (e.qg., inthe presence
of dynamically generated code)

Distributed

Avoids need to identify user-data entry points for
each component



Classifier Limitations

It's imprecise
We may have misidentified user data (unlikely)

We don't propagate taint across tainted-pointer
dereferences (to avoid false positives)

It'sincomplete

Dynamic analysis often has low code coverage
Results do not generalize to arbitrary executions



Outline

Overview
Hypothesis
Testing the
Hypothesis
Evaluation
Ongoing
Work



Evaluation Setup

Distributed applications
Hypertable: Key-value store
KFS/CloudStore: Filesystem

OpenSSH (scp): Secure file transfer
Configuration

1 client, 1 of each system node
10 GB user-data file
Kept simple to ease understanding



Evaluation Metrics

Bug rates

Indirect: code size (static x86 instructions
executed)

Direct: Bug-report count (Bugzilla)
Data rates

Fraction of total I/O



Outline

Overview
Hypothesis
Testing the
Hypothesis
Evaluation
OpenSSH
Ongoing
Work



Bug Rates: Code Size

OpenSSH: Executed Static Instructions

Agent 100 0 11
Server 97.8 2.2 103
Client (scp) 98.9 1.1 69
Average 98.9 1.1 61

Even components that touch user-data
are almost exclusively control plane



Bug Rates: Report Count

OpenSSH: Bugzilla Report Count

Agent 100 0 2

Server 100 0 215
Client (scp) 99 1 153
Average 99.7 0.3 123

Control plane is the most error-prone,
even in components that touch user-data



Control Plane i1s More Bug-Prone.

Why?

(1) Control plane executes many
functions to perform its core tasks

OpenSSH: # of functions hosting top
90% of dynamic instructions

g 13 0 Most active data plane
Server 100 1 functions:

Client 27 1 aes_encrypt() and
(scp) aes_decrypt()

Average 47 1



Control Plane i1s More Bug-Prone.

Why?

(2) Control plane relies heavily of custom code

OpenSSH: % of Dynamic
Instructions Issued from Libraries

Data plane often relies

Agent 82.7 0 on well-tested libraries
Server 93.6 99.6 (e.g., libc, libcrypto,
Client 96.2 100 etc.)

(scp)

Average 90.8 99.8



Data Rates: A Closer Look

What should | say here?

Agent 100 0 0.001
Server 0.8 99.2 20.2
Client (scp) 0.6 99.4 20.2



Ongoing Work

How well do results generalize?
To other code paths

To other applications
How do we achieve control plane
determinism?

Should we just ignore the data plane?
Should we use inference techniques?



Conclusion

What have we arqgued?

Control-plane determinism enables record-
efficient, high-fidelity datacenterreplay

What's next?
More application data points

Questions?



