
GautamAltekar and Ion Stoica
University of California, Berkeley



 Large-scale, 
data-intensive, 
distributed apps

Debugging datacenter software is really hard

Datacenter software?

Non-determinism
 Can’t reproduce 

failures
 Can’t cyclically 

debug

Hard?

How can we reproduce non-deterministic 
failures in datacenter software?



Why deterministic replay?
 Model checking, testing, verification

 Goal: find errors pre-production

 Can’t catch all errors

 Can’t reproduce production failures

Record Replay

Non-deterministic data
(e.g., inputs, thread interleaving)

Log file

Non-deterministic data

Generate replica of original run, hence failures



 Always-on production use

 < 5% slowdown

 Log no more than traditional console logs (100 
Kbps)

 High fidelity replay

 Reproduce the most difficult of non-deterministic 
bugs



Always-on 
operation?

High fidelity 
replay?

FDR, Capo,
CoreDet

No Yes

VMWare, 
PRES, ReSpec

Yes No

ODR, ESD, 
SherLog

Yes No

R2 Yes No

None suitable for the datacenter



Build a Data Center Replay System

 Record efficiently 
~20% overhead, 100 
KBps

 High replay fidelity
 Replays difficult 

bugs

Target Design for

 Large-scale, data-
intensive, 
distributed apps

 Linux/x86



Overview
Approach
Testing the 

Hypothesis
Preliminary 

Results
Ongoing 

Work



For debugging, not necessary to produce 
identical run

Often suffices to produce any run that has 
same control-plane behavior



Datacenter apps have two components

Processes the data
Simple, High traffic

Checksum verification
String matching

Manages the data
Complicated, Low traffic

Distributed data placement
Replica consistency

1. Control-plane code 2. Data-plane code



Relax guarantees to control-plane 
determinism

Meet all requirements for a practical 
datacenter replay system



Overview
Approach
Testing the 

Hypothesis
Preliminary 

Results
Ongoing 

Work



Experimentally show the control plane has:
1. Higher bug rates, by far

 Most bugs must stem from control plane code

 Implies high fidelity replay

2. Lower data rates, by far

 Consumes and generates very little I/O

 Implies low overhead recording



Control Plane Data Plane

Evidence support the hypothesis

99% 1% 99%1%

Bug Rate Data Rate Bug Rate Data Rate



 Overview
 Hypothesis
 Testing the 

Hypothesis
How?

 Preliminary 
Results

 Ongoing 
Work



 To make statements about planes, we must 
first identify them

 Goal: Classify code as control and data plane 
code

 Hard: tied to program semantics

 Obvious approach: Manually identify plane 
code 

 Error prone and unreliable



1. Manually identify user-data files

 User data? E.g., file uploaded to HDFS

2. Automatically identify static instructions 
tainted by user data

 Taint-flow analysis

3. Instructions tainted by user data are in data 
plane; others are in control plane



 Instruction-level

 Works with apps written in arbitrary languages

 Dynamic

 Easier to get accurate results (e.g., in the presence 
of dynamically generated code)

 Distributed

 Avoids need to identify user-data entry points for 
each component



 It’s imprecise

 We may have misidentified user data (unlikely)

 We don’t propagate taint across tainted-pointer 
dereferences (to avoid false positives)

 It’s incomplete

 Dynamic analysis often has low code coverage

 Results do not generalize to arbitrary executions



Overview
Hypothesis
Testing the 

Hypothesis
Evaluation
Ongoing 

Work



 Distributed applications

 Hypertable: Key-value store

 KFS/CloudStore: Filesystem

 OpenSSH (scp): Secure file transfer

 Configuration

 1 client, 1 of each system node

 10 GB user-data file

 Kept simple to ease understanding



 Bug rates

 Indirect: code size (static x86 instructions 
executed)

 Direct: Bug-report count (Bugzilla)

 Data rates

 Fraction of total I/O



Overview
Hypothesis
Testing the 

Hypothesis
Evaluation

OpenSSH

Ongoing 
Work



Control (%) Data (%) Total (K)

Agent 100 0 11

Server 97.8 2.2 103

Client (scp) 98.9 1.1 69

Average 98.9 1.1 61

Even components that touch user-data 
are almost exclusively control plane

OpenSSH: Executed Static Instructions



OpenSSH: Bugzilla Report Count

Control (%) Data (%) Total

Agent 100 0 2

Server 100 0 215

Client (scp) 99 1 153

Average 99.7 0.3 123

Control plane is the most error-prone, 
even in components that touch user-data 



(1) Control plane executes many 
functions to perform its core tasks

Control Data

Agent 13 0

Server 100 1

Client 
(scp)

27 1

Average 47 1

OpenSSH: # of functions hosting top 
90% of dynamic instructions 

Most active data plane 
functions: 

aes_encrypt() and 
aes_decrypt()



(2) Control plane relies heavily of custom code

Control 
(%)

Data 
(%)

Agent 82.7 0

Server 93.6 99.6

Client 
(scp)

96.2 100

Average 90.8 99.8

OpenSSH: % of Dynamic 
Instructions Issued from Libraries

Data plane often relies 
on well-tested libraries 

(e.g., libc, libcrypto, 
etc.)



Control (%) Data (%) Total (GB)

Agent 100 0 0.001

Server 0.8 99.2 20.2

Client (scp) 0.6 99.4 20.2

What should I say here?



 How well do results generalize?

 To other code paths

 To other applications

 How do we achieve control plane 
determinism?

 Should we just ignore the data plane?

 Should we use inference techniques?



What have we argued?
Control-plane determinism enables record-

efficient, high-fidelity datacenter replay

What’s next?
More application data points

Questions?


