
AVATARs for Pennies: Cheap N-version Programming for Replication

Atul Singh Nishant Sinha
{atuls,nishants,nitin}@nec-labs.com

NEC Laboratories, Princeton

Nitin Agrawal

Software systems fail; distributed systems fail in

worse ways [20]. The causes of failures can be var-

ied, including device and hardware failures, software

bugs, memory errors, and complexity of protocols. Some

lead to fail-stop errors that bring the system (or a sin-

gle node) down, while others lead to more insidious

fail-stutter [2] or fail-silent errors that cause unexpected

behavior. Many tools exist to find bugs in distributed

systems [15]; however, bugs still remain and inevitably

manifest as faults.

Replicated state machine (RSM) paradigm [22] is a

practical technique to tolerate faults. The service logic

is modeled as a deterministic state machine and instanti-

ated on multiple replica machines. A consensus protocol

is used to assimilate the correct result assuming no more

than a threshold of faulty replicas1. RSM approach as-

sumes that replica failures are uncorrelated—otherwise

the fault threshold may be violated, affecting the safety

and liveness properties of the service.

A classic approach to achieve fault-independence is to

use N-version programming (NVP) [3]. Based on the

same system specification, several development teams

work independently to design and implement N versions.

The failure diversity in such systems stems from two

sources: human (e.g., different choices of algorithms)

and programmatic (e.g., choice of language, compiler,

run-time). Unfortunately, NVP has serious drawbacks:

it is often prohibitively expensive, and the total time to

develop a software can increase significantly, adversely

affecting the time-to-market. Consequently, NVP is pri-

marily limited to mission-critical software [4].

A middle ground for using the N-version approach is

to opportunistically leverage existing diversity in soft-

ware implementations for a given system specification.

For example, EnvyFS [5] uses multiple open-source file

system implementations (e.g., ext3, JFS, ReiserFS) as

replicas while Shepherd [26] uses MySQL, Oracle, and

DB2 as the replicas. A key advantage of these ap-

proaches is the relatively low cost since the base imple-

mentations are already available; unfortunately, this also

means that it is not suitable for building new applications.

In this paper, we propose AvatarFactory as a

means to achieve the necessary diversity for building

1Depending on the consensus protocol, the RSM approach can be
used to tolerate crashes as well as more complex Byzantine faults.

reliable distributed systems. The key contribution of

AvatarFactory is in developing an automated and

cost-effective methodology to introduce the diversity; it

does so in multiple ways: it exploits the diversity in off-

the-shelf compilers and their corresponding run-times,

leverages insights from existing software recovery tech-

niques to tolerate deterministic bugs, and employs re-

cently developed high-level domain specific languages to

reduce the chances of software errors during the imple-

mentation stage. Our preliminary evaluation shows that

the versions produced by AvatarFactory are diverse

enough to tolerate compiler introduced errors.

Although AvatarFactory is a cost-effective ap-

proach to diversity, it is less powerful than traditional

approaches to N-version programming because the ini-

tial design is developed by a single team (as opposed to

N teams). However, AvatarFactory attempts to re-

gain the diversity lost due to the absence of multiple hu-

man teams through a series of transformations. Note that

AvatarFactory is not a panacea since it is impossi-

ble to automatically introduce enough diversity to mask

all possible execution errors, such as resource leaks.

1 Background

Software Fault Recovery: Checkpoint and restart [11]

is a widely used approach to recover from software faults

but is not effective for deterministic errors. Rx [19] uses

checkpoint and restart techniques in addition to chang-

ing the execution environment (via memory layout, de-

laying freeing pointers, zero-filling buffers, etc.) dur-

ing re-execution to tolerate deterministic bugs. Micro-

reboot [8] reduces the unavailability penalty incurred by

whole-system restart approaches [12] by rebooting only

the failed component, but requires the software to be de-

signed in a loosely-coupled fashion. We explore tech-

niques similar to Rx to improve software diversity.

Model-based design (MBD): In this approach [21], a

model of the system is designed which is then tested

using high-level specifications and then automatically

translated to a deployed system. MBD is the basis of

modern avionics and automotive systems design (e.g.,

based on MATLAB Simulink models) and also the elec-

tronic design automation industry. We apply the MBD

approach to achieve software diversity cheaply.

Domain Specific Languages (DSL): Recently, declar-

ative data-driven programming models, e.g., based on

Figure 1: Understanding diversity.

DataLog [16, 27], have been proposed for implementing

distributed systems. Erlang [1], a DSL for highly con-

current distributed applications communicating via asyn-

chronous message passing, has been widely used at Er-

icsson and recently at Facebook. Go [24], a DSL re-

cently developed by Google, aims to simplify program-

ming large-scale concurrent systems. TLA+ [14] com-

bines temporal logic with logic of actions for specifying

concurrent systems.

2 AvatarFactory Architecture

In Figure 1, three executable software versions are gen-

erated from a single system specification. The behav-

ior of each version consists of both good (Gi) and buggy

behaviors (Bi). Bugs occur either due to erroneous hu-

man interpretation of the specification (Hi) or due to the

compiler during generation of the executable (Ci), i.e.,

Bi = Hi ∪Ci. For fault independence, we require that

Bi ∩B j = φ for i 6= j. With N different human teams

and each using different development frameworks, tradi-

tional NVP approachesminimize the correlation between

Bi’s. Our goal is to achieve software diversity as close as

possible to NVP without the due cost.

2.1 Design

The AvatarFactory architecture is presented in Fig-

ure 2. The system is specified by a single human

team which serves as the input to AvatarFactory.

The first step is to use testing or formal verification

frameworks to reduce the likelihood of errors in the in-

put. Once verified, the input is translated to multiple

(and different) programming languages through source-

to-source translation. Finally, the translated programs are

compiled (or interpreted) using their respective compil-

ers (or interpreters).

Choice of Input Language There are several choices for

the input language such as Prolog, DataLog, Erlang, or

TLA+. Choosing such high-level or DSLs provide mul-

tiple advantages. First, since the programs written in a

DSL are succinct and close to pseudo-code, the chances

of errors are reduced. Moreover, the lack of low-level de-

tails in a DSL (e.g., indirect pointer accesses in C) makes

Figure 2: The AvatarFactory architecture. Ti rep-
resents i-th source-to-source translator and Ci represents
i-th compiler/run-time to produce i-th version.

the design more amenable to rigorous formal verification

techniques [10]. Therefore, using a high-level DSL as in-

put improves the effectiveness of our framework. More-

over, recent work has shown that declarative languages

(e.g., DataLog [16], Prolog [17]) are quite effective at

modeling distributed protocols.

Testing and Verification of Specification A large body

of work exists on testing and verification of com-

puter programs, both for traditional imperative lan-

guages to build distributed systems [10, 13] and emerg-

ing DSLs such as DAHL [17] and NDLog [27];

AvatarFactory can re-use these techniques directly.

Source-to-Source Language Translators Once verifi-

cation is complete, a set of source-to-source transla-

tors are used to generate multiple versions of the in-

put in different programming languages. For example,

an input program in Prolog can be translated to a C

and a Java source program. These translators play a

key role in AvatarFactory; in fact, the usefulness

of AvatarFactory crucially depends on the correct-

ness, availability, and diversity of such translators. Fortu-

nately, a variety of source-to-source translators exist for

different source programming languages [6, 9, 25] and

checkers exist to test semantic equivalence of the trans-

lated and source programs [7].

Compilers and Run-times The generated multiple

source versions from the previous phase are then com-

piled to run directly on the machine or to be interpreted

by the language run-time (e.g., JVM). The compilers use

a wide range of optimizations to improve the perfor-

mance, such as speculative branch prediction and pro-

ducing branch-free code. These optimizations enable

diverse behaviors, even for the same programming lan-

guage (e.g., C program compiled using -O0 and -O3),

and thus can be useful to further improve diversity.

2.2 Regaining Lost Diversity

Note that AvatarFactory starts with a single high-

level specification to ensure full automation and to obtain

multiple versions cheaply. As a result, it may lose the di-

versity that multiple human teams provide in traditional

NVP. In other words, since Hi’s across the versions are

2

identical for AvatarFactory, the functional errors in

the input may appear as deterministic bugs in all the dif-

ferent versions. Although it is impossible to completely

eliminate these bugs, AvatarFactory tries to reduce

the incidence of correlated bugs in multiple ways.

First, by using a high-level DSL, many low-level bugs,

e.g., related to memory and resource management, are

avoided. Second, by rigorous verification and testing,

many of these functional errors are detected and elimi-

nated. Finally, our translation phase, coupled with the

different compilers, provides an effective mechanism to

make the execution environment diverse.

Different translators typically layout different data

structures in the output source, leading to different be-

haviors. Moreover, they may have different memory al-

location/deallocation schemes which result in different

execution behaviors. For example, a translator to C++

may explicitly call a class destructor, while an-

other translator to Java may call the finalize class

method. The destructor frees the memory immediately

while the finalize method is called during the next

garbage collection cycle; this may lead to the resource

being available longer in the Java implementation, thus

avoiding a potential crash that the C++ programmay suc-

cumb to. Our insights to introduce diversity in the trans-

lator phase are similar to those employed in Rx to tolerate

deterministic bugs in a single source implementation.

3 Preliminary Evaluation

We have built an initial prototype of AvatarFactory

wherein the input specification is provided in Prolog. To

produce the three versions, the input is fed to the SICS-

TUS [23] compiler and runtime, the gprolog [9] com-

piler, and PrologCafe [6] system2. We have not yet

implemented the verification phase.

We studied the bug logs of gprolog compiler and

discuss only one bug [18] here due to space limits.

bug :- (catch(X is a, _, fail);

dummy(_,s(_)), X=0),

dummy(X).

dummy(_).

dummy(_,_).

test_bug :- (bug -> write(’OK!\n’);

write(’BUGGY!!!\n’)).

:- initialization(test_bug).

The expected output of this code is ‘OK!’, however,

the reporting user obtained ‘BUGGY!’. This bug is trig-

gered due to an erroneous optimization in gcc, which

removes an assignment done to the ebx register, assum-

ing that it is a local variable. The suggested fix was to

reconfigure gprologwith --disable-regs option.

The above snippet of code was provided as input to

AvatarFactory. To reproduce the bug in gprolog,

2PrologCafe translates the input Prolog to Java which is then com-
piled using OpenJDK 1.6 Java compiler.

we used an earlier version 1.3.0 (the bug is fixed in cur-

rent version 1.3.1). The SICSTUS and PrologCafe

versions did not produce the erroneous output, providing

initial evidence that AvatarFactory generates diver-

sity in the replicas to tolerate compiler introduced bugs.

Going forward, we plan to complete the implementation

and experimentally evaluate AvatarFactory.

References
[1] J. Armstrong. Programming Erlang: Software for a Concurrent World. The

Pragmatic Bookshelf, Raleigh, NC, 2007.

[2] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-Stutter Fault Toler-
ance. In HotOS VIII, pages 33–38, Schloss Elmau, Germany, May 2001.

[3] A. A. Avižienis and L. Chen. On the Implementation of N-Version Pro-
gramming for Software Fault Tolerance During Execution. In COMP-
SAC’77, Chicago, USA, 1977.

[4] A. A. Avižienis, M. R. Lyu, andW. Schütz. In Search of Effective Diversity:
A Six-Language Study of Fault-Tolerant Flight Control Software. In FTCS
’88, Tokyo, Japan, June 1988.

[5] L. N. Bairavasundaram, S. Sundararaman, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Tolerating File-System Mistakes with EnvyFS. In
USENIX ’09, San Diego, CA, June 2009.

[6] M. BANBARA and N. TAMURA. http://kaminari.scitec.
kobe-u.ac.jp/PrologCafe/.

[7] C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck.
Tvoc: A translation validator for optimizing compilers. In CAV, 2005.

[8] G. Candea, G. C, S. Kawamoto, Y. Fujiki, A. Fox, and G.Friedman. Mi-
croreboot - a technique for cheap recovery. In OSDI, 2004.

[9] D. Diaz. http://www.gprolog.org/.

[10] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Trans. on CAD of Inte-
grated Circuits and Systems, 27(7):1165–1178, 2008.

[11] E. Elnozahy, L. Alvisi, Y.-M. Wang, and D. Johnson. A survey of rollback-
recovery protocols in message passing systems. ACM Computer Surveys,
2002.

[12] J. Gray. Why do computers stop and want can be done about it? In SRDS,
1986.

[13] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat. Mace:
language support for building distributed systems. In PLDI ’07, 2007.

[14] L. Lamport. https://research.microsoft.com/en-us/um/
people/lamport/tla/book.html.

[15] X. Liu, W. Lin, A. Pan, and Z. Zhang. Wids checker: Combating bugs in
distributed systems. In NSDI’07, 2007.

[16] B. T. Loo, T. Condie, J. M. Hellerstein, P.Maniatis, T. Roscoe, and I. Stoica.
Implementing declarative overlays. In SOSP ’05, 2005.

[17] N. Lopes, J. Perez, A. Rybalchenko, and A. Singh. Applying prolog for
development of distributed systems. In ICLP, 2010.

[18] C. optimization bug. http://lists.gnu.org/archive/html/
bug-prolog/2008-09/msg00009.html.

[19] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as
allergies—a safe method to survive software failures. In SOSP ’05.

[20] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vah-
dat. Pip: detecting the unexpected in distributed systems. In NSDI ’06.

[21] T. Schattkowsky and W. Mller. Model-based design of embedded systems,
2004.

[22] F. B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[23] SICStus Prolog. http://www.sics.se/isl/sicstuswww/
site/index.html.

[24] The Go Programming Language. http://golang.org.

[25] T. A. J. to C translator. http://www.cs.arizona.edu/
projects/sumatra/toba/doc/.

[26] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tolerating byzan-
tine faults in transaction processing systems using commit barrier schedul-
ing. In SOSP ’07, 2007.

[27] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu. Formally
verifiable networking. In HotNets, 2009.

3

