
Towards Automatically Checking Thousands of Failures
with Micro-specifications

Haryadi S. Gunawi, Thanh Do†, Pallavi Joshi, Joseph M. Hellerstein,
Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†, and Koushik Sen

University of California, Berkeley † University of Wisconsin, Madison

Abstract
Recent data-loss incidents have shown that existing

large distributed systems are still vulnerable to failures.
To improve the situation, we propose two new testing ap-
proaches: failure testing service (FTS) and declarative
testing specification (DTS). FTS enables us to systemat-
ically push a system into thousands of failure scenarios,
leading us to many critical recovery bugs. With DTS, we
introduce “micro-specifications”, clear and concise spec-
ifications written in Datalog style, which enables devel-
opers to easily write, refine, and manage potentially hun-
dreds of specifications.

1 Introduction

The power of large clusters behind cloud computing has
brought us not only benefits but also a new challenge: a
growing number and frequency of failures that must be
managed [8, 9]. Failing to deal with failures will directly
impact the reliability and availability of data and jobs.
Unfortunately, recent data-loss incidents experienced by
a telecommunication provider [14], a popular social net-
working site [15], and a large bank [16] still display the
vulnerability of existing systems to hardware failures, fail-
ures such as machine crashes, disk and network failures.
This leaves us with an important question: How can we
verify the correctness of large distributed systems in deal-
ing with a growing number failures?

We believe a proper answer requires two more rigor-
ous approaches than the current state-of-the-art of testing.
First, we must begin with a new approach that cansys-
tematicallypush a system into many possible failure sce-
narios. Some existing tools are often not equipped with a
fault-injection feature, and thus failures are injected man-
ually. Some others have the feature, but only inject fail-
ures of the same type (e.g., crashes) [20]. When it comes
to injecting a wide variety of failures, the state-of-the-art
in industry is to do it randomly [3, 11, 19].

Second, after thousands of failures are systematically
injected, we still need to verify the correctness of many
properties of the system. For a large distributed system,

there are potentially hundreds of properties that must be
checked (especially under failures). However, with exist-
ing approaches, a check sometimes has to be written in
tens of lines of code (e.g., in C++ [20], or a scripting lan-
guage [12]). The drawbacks are two-fold. First, they
hinder developers from writing a large number of specifi-
cations; in practice, the number of deployed checks for a
new system is typically small, and hence does not scale to
the complexity of the system. Second, even if we have
hundreds of specifications (e.g., in old systems where
the developers have incrementally added them over the
years), they could be as big as the system code itself. As
a result, the specifications are also likely to be wrong and
correcting them is not always straightforward [7]. Fur-
ther complicating the matter, the specifications must also
evolve as the system evolves [11].

To overcome the first challenge above, we presentfail-
ure testing service(FTS), a framework that can system-
atically exercise many combinations of varieties of fail-
ures (and by “many” our target is “thousands of scenar-
ios”). The key ingredient to a systematic fault-injection
technique is to identify failure points and a list of possi-
ble failures that could happen at a particular failure point
(crashes, disk/network faults, etc.). A failure point and an
injected failure constitute afailure ID that FTS will ex-
plore; exercising a combination of failures is essentially
exercising a combination of failure IDs.

To enable developers to write specifications quickly and
incrementally, we introducedeclarative testing specifica-
tion (DTS). At the heart of DTS is a declarative relational
logic language (based on Datalog) that enables a check to
be written in only a few lines. We chose Datalog style due
to its nature of compactness and expressiveness in speci-
fying logical relationships [1, 6, 13, 17]. With DTS, we
promote a practical iterative style of writing specification:
a developer can begin with a handful of high-level speci-
fications, and as she finds new bugs, she can add more de-
tailed specifications to precisely pinpoint the bugs. If the
same bugs appear again in the future (as the code being
developed), the tighter specifications will allow the devel-
oper to avoid wasting another hours of debugging time.

DataNode

create()

{ ... }
stream()

{ ... }

X
X

X
X

DataNode

create()

{ ... }
stream()

{ ... }

X
X

X
X

DataNode

create()

{ ... }
stream()

{ ... }

X
X

X
X

Client

putfile()

{ }

X
X

X
X

X
X

X
X

X
X

X
X

Figure 1: HDFS Write Protocol. The figure illustrates
when and where failures could occur in this protocol. Commu-
nications to the master node is excluded for brevity.

This paper makes the three following contributions:

• We introduce failure IDs as a new abstraction for ex-
ploring failures systematically. In addition, we also
provide a ready-to-use “failure surface” for Java-
based systems (§2).

• With DTS, we introduce “micro-specifications”,
clear and concise specifications written in Datalog
style, which enables developers to manage hundreds
of specifications. We also present a design pattern
for declarative debugging, that is, how a developer
could refine specifications iteratively (§3).

• We have applied FTS and DTS to the Hadoop
File System (HDFS), an open-source version of the
Google File System [5], and uncovered many criti-
cal recovery bugs. We chose HDFS as our first target
due to its complexity (over 25 KLOC) and its grow-
ing popularity (it has been widely deployed in over
80 medium to large organizations including Amazon,
Yahoo, and Facebook).

After presenting our contributions, we follow with a
discussion of new challenges (§4) and close with related
work (§5) and conclusion (§6).

2 Failure Testing Service

Figure1 motivates the need for a systematic failure ser-
vice. For example, in a distributed write, there are many
points where the system components could fail (labeled
with X). One form of expectation is that the write protocol
should succeed if at least one node is alive [5]. The de-
velopers might want to verify that this specification holds
even if, for example, the disk at the second node fails in
the create phase; or, if the first nodeand the second node
crash in the data streaming phase.

To help developers in this regard, the ultimate goal of
FTS is to exercise as many combinations of failures as
possible. In a sense, this is similar to model checking
which explores different sequences of states. One key
technique in model-checking is to record the states that

Info Type Field Example value
Func. call : OutputStream.flush()

Static I/O type : Write
Location : BlockReceiver.java
Line : 45

Dynamic Stack trace : (the stack trace)
Domain Thread name : Block Receiver
specific Target I/O : Disk1, Metafile

FTS Failure : Bad disk
Hash Value : 1289065658

Table 1: A Sample of Failure ID. A failure ID contains
static, dynamic, and domain-specific information about a failure
point and an injected failure. Hash is used to label a failureID.

have been explored, which is commonly done by hashing
the abstract state of the system and recording the history
of the hashes. Similarly in our case, we need a clear ab-
stract representation of a failure, which can be hashed and
thus recorded in the failure history. Below, we first intro-
duce the concept of failure IDs and follow with the overall
framework. So far, we have used FTS to exercise more
than 40,000 combinations of failures.

2.1 Failure IDs

To construct a failure ID, we first define afailure point,
a system/library call that performs disk or network I/O.
For every failure point, FTS generates a list of possible
failures that could happen before and after. For example,
FTS could throw an exception before a disk-write failure
point. FTS could also crash a node after the node receives
a message but before it sends an acknowledgment. When
FTS exercises a failure ID (i.e., injects a particular failure
at a particular failure point), FTS records the hash value
of the failure ID in the failure history.

Table1 shows an example of a failure ID. The table also
shows that a failure point contains more complex informa-
tion (static, dynamic, and domain-specific) than what we
have described above. These information are essential to
increase failure coverage. For example, if a static failure
point could be called by different upper-level functions,
then dynamic information such as stack trace is useful to
expand the failure scenarios. Domain-specific informa-
tion such as target I/O is valuable because a common func-
tion could write to different file types or send messages to
different nodes.

2.2 Implementation

We plan to integrate the concept of failure IDs to a model
checker (since a failure ID does not contain the system
state). However, since not all systems support a ready-to-
use model-checker, we build our own testing framework

FTS Server

Fail /

No Fail?

Workload Driver

while (server injects

 new failureIDs) {

 runWorkload();

 // ex: hdfs.write

}

Instrumented HDFS

Java SDK

AspectJ

Failure

Surface
Failure

IDs

Figure 2: FTS Framework.

that could be quickly integrated to the system we want
to test. Figure2 depicts the overall framework of FTS.
We first instrument the system (e.g., HDFS) by insert-
ing a “failure surface” which builds failure IDs and send
them to the FTS server, which then makes failure deci-
sions based on the failure history. The developer attaches
the workload to be tested at the workload driver and spec-
ifies the maximum number of failures (MAX). The while
loop exits when the server does not see a new combination
of MAX failure IDs.

FTS is written in 4180 lines of code in Java. We use
aspect oriented programming (AspectJ) to insert the fail-
ure surface; no changes to the system under test. As of
now, FTS is able to inject transient failures, persistent disk
failures, crashes, and disk corruption. In the future, we
will support other types of failures (e.g., delays to emu-
late message reordering).

2.3 Preliminary Results

We have run FTS on three HDFS workloads: write, ap-
pend and master reboot. In total, FTS has generated 394
unique failure IDs and exercised 41332 unique combi-
nations (with a maximum of three failures per run), out
of which 22872 result in unsuccessful experiments. The
ability to explore this large number of combinations has
led us to numerous critical recovery bugs (more in Sec-
tion 3.4). Furthermore, we found some sections of code
that would not have been executed unless three failures
are injected. Thus, with FTS, the vision of “towards 100%
coverage of recovery code” becomes feasible.

To show that FTS can be deployed to other systems
quickly, we have ported FTS to two different versions
of the Apache Lucene concurrency library in just a few
hours. In this particular experiment, we would like to find
new concurrency bugs in the presence of failures (e.g., a
hang bug because an exception block does not wake up
waiting threads); we note that many novel concurrency
bug-finding tools often do not incorporate failures. We
have run 23 workloads (out of the available 184 work-
loads in their JUnit tests) and found 4 concurrency bugs
(2 are new).

3 Declarative Testing Specification

After failures are injected, the developer needs to verify
the system correctness. This can be done in many ways
(e.g., via external behaviors or detailed internal checks).
Typically, a single check could reach one hundred lines
of code [7, 11, 19]. As a result, managing hundreds of
checks could be complicated (not to mention that they
must evolve as the system evolves [11]).

With DTS, we attempt to improve the state-of-the-art of
writing testing specification. To achieve this, we explored
writing “micro-specifications”, clear and concise specifi-
cations written in Datalog style. We chose this style as it
has been successfully used in building distributed systems
declaratively [1, 13] and in verifying some aspects of sys-
tem correctness (e.g., security [6, 17]). However, since
the innovation of high-performance declarative language
is still underway [1], we feel that using Datalog for just
writing system specifications is a sweet spot to explore.

In the next two sections, we show how micro-
specifications promote a practical iterative style of writing
specifications. More specifically, the first example shows
how a developer canrefineloose specifications into tighter
ones, while the second example illustrates how toincre-
mentally addmore detailed specifications. The motivation
for these examples is that a developer never begins with
complete and precise specifications. But, as she unearths
new problems, she might wish to refine existing specifica-
tions or add more specifications to pinpoint similar prob-
lems quickly in the future.

3.1 Refining Specifications

This section focuses on demonstrating how a developer
could refine a high-level specification into a tighter one.
Here, we use the HDFS log recovery process as an ex-
ample. We begin with a high-level specification that will
catch data-loss bugs:

lostFiles(F) :- userFiles(F), not-in server(F)

The specification is written as a Datalog rule which
consists of a head (lostFiles) and predicates in the body
(userFiles andserver). The head is evaluated when the
body is true. A comma between predicates represents con-
junction. Thus, the rule specifies the relation: “a user file
F is lost if it does not exist at the server.”

Next, we need to “fill” the test predicates with runtime
facts; the head and the predicates are essentially database
tables. TheuserFiles table is filled whenever the HDFS
client write API returns a success. Populating theserver

table is a bit more complicated. As a background, HDFS
maintains two server files that store the metadata of user
files: the image file (img) and the log file (log). When a
client stores a file, it is first recorded in the log file. Upon

Contents of
{img, log, User files
log2, img2} Steps (1 to 5) (f1 and f2) in:
f1, f2, − , − 1. Start img + log

f1, f2, Ø, − 2. Create an emptylog2 img + log

f1, f2, Ø, f1f2 3. Mergeimg andlog img + log

to img2

f1, Ø, − , f1f2 4. Renamelog2 to log img2

f1f2, Ø, − , − 5. Renameimg2 to img img + log

Table 2: Log Recovery Protocol. The table shows the
process of merging user-file metadata (f1 and f2) in img andlog.
If a crash occurs in the middle, the next reboot will start at adif-
ferent step depending on which of the four files exist (not shown).
Ø and− represent empty and non-existent file respectively.

a master reboot (or periodically), the log recovery pro-
cess will merge the two files into the image file and empty
the log file. To ensure idempotency, HDFS utilizes two
other files (log2 andimg2). In short,at any time, user files
should exist in the union of all the four files. Thus, we
can simply write the specification below, which reads: “a
user file F exists at the server if F exists in any of the four
server files.” Uppercase and lowercase letters (e.g., F and
img) stand for variables and constants respectively.

server(F) :- filesIn(F, img);

server(F) :- filesIn(F, log);

server(F) :- filesIn(F, log2);

server(F) :- filesIn(F, img2);

We use FTS to automatically insert all possible crashes
within this process. Interestingly, the rules above trigger
a violation of the data-loss specification. However, since
the rules are not rigorous enough, we were not able to
exactly pinpoint the bug. We spent a couple hours de-
bugging, and then refined the specification (and hence the
iterative process of writing specifications).

The new specification reflects in detail the five-step pro-
cess shown in Table2. That is, depending on the progress,
user files are expected to be in a different subset of the
four files as shown in the last column of the table. For
example, during the process of mergingimg and log to
img2 at step 3, user files are expected to be inimg and
log, but not inimg2, becauseimg2 is still not complete.
However, whenlog is emptied at step 4,img2 is com-
plete, and thus user files should be found inimg2, but not
in img and log. The way HDFS keeps track the steps
is via the existence of the four files (column 1). To ex-
press this, we simply introduce two new relational tables
exists(img,log,log2,img2) andstep(Num):

step(1) :- exists(1, 1, 0, 0);

step(2) :- exists(1, 1, 1, 0);

step(3) :- exists(1, 1, 1, 1);

step(4) :- exists(1, 1, 0, 1);

Using the new relations above, we can simply write
new server rules that correspond to the logic in the last
column of Table2, that is, “user files should be inimg2 at
step 4, or inimg andlog otherwise”:

server(F) :- filesIn(F, img2), step(N), N == 4;

server(F) :- filesIn(F, img) , step(N), N != 4;

server(F) :- filesIn(F, log) , step(N), N != 4;

With this more rigorous specification, we were able to
pinpoint the data-loss bug. As a background, if the master
node crashes exactly before the log renaming operation
at step 4, the protocol will begin again from step 1 (not
shown). However, exactly before step 4, there is a bug
that truncates the log file (f2 is no longer inlog). Thus,
if a crash happens after the truncate bug and before step
4, the next reboot will mergeimg (f1) with an emptylog!
The finalimg file will only contain f1, and hence f2 is lost.
This bug still exists in the latest released version of HDFS.

ThelostFiles rule captures the bug because all rules
that depend onlog are re-evaluated when the bug trun-
cateslog: file f2 is removed fromfilesIn(F, log),
which will then remove f2 from server(F) (because the
bug is at step 3). Finally, f2 is added tolostFiles because
f2 is in userFiles but not inserver. In summary, in this
section, we have written a full-page prose specification of
the log recovery process, and it has been elegantly sum-
marized in just 8 lines of Datalog rules.

3.2 Adding Specifications Incrementally

To illustrate the generality of the iterative process above,
we briefly give another example where we catch unavail-
ability bugs. This time, rather than refining a specifica-
tion, we incrementally add more specifications to pinpoint
the bugs. We begin with a general specification below
which reads: “there is an unavailability bug if a write op-
eration fails but there is at least one good datanode.”

unavailability(F, Num) :-

write_op(F, fail), good_nodes(Num), Num >= 1;

We caught some bugs that break the rule. One bug is a
buggy failover where the master keeps returning the same
datanodes that the client cannot reach. This is because
it takes the master 10 minutes to detect a dead datanode
by default. But, since the master does not incorporate the
client’s view of unreachable datanodes, the master does
not give the client another set of available datanodes. To
catch this specific design bug, we simply added a new
rule:

bad_failover(BadNode) :-

master_returns(BadNode), unreachable_nodes(BadNode);

3.3 Implementation

To fill the rules with runtime facts, one can write some
form of state-exposer that interposes the internal functions
of each node [11]. However, we decided to interpose and
reverse-engineer the system API and the disk and network
protocols, primarily because inter-node protocols and on-
disk formats change less frequently than the internal func-
tions. The obtained information is then “translated” into
Datalog. For example, when a buffer is written to theimg

file, we extract the file entries in the buffer, and add them
to filesIn(F, img); when the HDFS write API returns a
success, the corresponding file is added touserFiles(F);
when HDFS creates and deletes any of the four storage
files, the exists() relation is re-evaluated. After the
translation phase, the tester enters the declarative world
in which she can build the abstract model of the system
succinctly. The DTS translation mechanism for HDFS is
written in 1200 lines of code in Java.

3.4 Preliminary Results

So far, we have written 50 rules in less than 70 lines. The
number is still small because we have been writing spec-
ifications in a bug-driven manner, that is, for every bug
that we found (from external observation), we wrote more
specifications to pinpoint the bug more precisely. We be-
lieve that there is nothing that prevents us from writing
many more specifications, which is our next top priority.

We are still in the process of debugging the thousands
of unsuccessful experiments reported in Section2.3. As
of now, we have uncovered 21 bugs (15 are new, some
of which have been confirmed by the HDFS developers)
that lead to unavailability, data loss, and inconsistencies.
Since there is not enough space to explain all of them, we
only present our high-level observations below.

First, unsurprisingly, a system implementation is much
more complex than the prose specification; when we read
the simple prose specification of the HDFS write proto-
col, we had little confidence that we would find new bugs.
But, we were wrong; we found many bad failover strate-
gies that fail the corresponding operations even though
good resources are still available. Second, replicas are
not always valuable; they only prevent a single point of
hardware failure, but software is still the single point of
failure. A prime example is the data-loss bug described
in Section3.1; the bug causes the master node to lose all
replicas. Another example is some bugs in the append
protocol that make the datanodes lose all replicas of the
affected files.

3.5 Summary

Specifications written in DTS-style are generally short
and easy to understand. From our experience, the major

time spent is in understanding the HDFS internal designs.
Once we understand them, writing the specifications can
be done in a relatively short amount of time. However,
we expect that, if the developers adopt our approach, they
can write specifications more and faster than us. Another
major effort in building DTS is in building the translation
mechanism (e.g., converting information available from
the Java implementation to Datalog events). More specif-
ically, this needs to be done for all inter-node and node-
disk interfaces. If these interfaces change, our mechanism
must change too. But again, we expect that interfaces
change rarely. If the system’s internal designs change but
the interfaces don’t, then we only need to change the spec-
ifications in DTS, which is again considerably straight-
forward given the short amount of lines of code that we
need to deal with.

4 Future Work and Discussion

We have begun deploying FTS and DTS to two other large
distributed systems: Cassandra (an open-source version of
Amazon Dynamo and Google BigTable) and ZooKeeper
(an open-source version of Google Chubby). Also, due to
our initial success, the developers of these systems have
shown interest in adopting our approaches to their sys-
tems.

Apart from this initial success, there are new challenges
ahead. First, we need to intelligently prune the failure
points; the number of combinations of failures grows ex-
ponentially (e.g., in a particular setup with 149 failure
IDs and 3 injected failures per experiment, FTS generates
17263 thousands of experiments in over five hours). This
prohibits us to explore more failures per experiment. We
have sketched out some pruning techniques, but unfortu-
nately they are out of the scope of this paper.

Second, we need some form of heuristics to classify
unsuccessful experiments to the actual bugs. From our
experience, thousands of unsuccessful experiments map
to only a few number of bugs (§2.3 and§3.4). Without
heuristics, we have to debug one experiment at a time.

5 Related Work

We have compared the resemblance between FTS and
model-checkers [10, 19, 20]. To have a model-checker
exercise failures systematically, the notion of failure IDs
can be directly employed. We also have compared
DTS with the state-of-the-art of writing testing specifi-
cations [11, 12, 20] and shown that DTS enables more
concise specifications. Other than these, there are some
other relevant work: D3 uses a variant of Datalog to write
checks on top of distributed log messages [4], while ours
run on top of disk and network communications; Singthet

al. also use a variant of Datalog, but their checks only run
on systems built in the same language [18]; SQCK pro-
poses rewriting local file system checkers with SQL-style
declarative queries, while DTS targets distributed systems
and proposes a more compact and elegant Datalog-style
approach. Finally, Cloud9 also plans to introduce a new
testing specification that is accessible to programmers [2].

6 Conclusion

As failure becomes the norm, when data is lost or avail-
ability is reduced, we should no longer blame the failure,
but rather the inability to recover from the failure. Thus,
we began with a simple question: How can we assess the
quality of existing systems in handling thousands of pos-
sible failures? This simple question gave birth to FTS.
As we achieve this end, we were confronted with the fact
that, for a large distributed system, there are a large num-
ber of properties that need to be verified (not just state
invariants, but also specific behaviors of the recovery pro-
tocols). This gave birth to DTS, which has enabled us to
write, refine, and manage many micro-specifications eas-
ily; the more specifications we can write, the more prop-
erties we can verify, the finer bug reports we will produce,
and the less time we will spend on debugging.

7 Acknowledgments

We thank Peter Alvaro and the anonymous reviewers for
their feedback and comments. We also thank members
of the BOOM research group, in particular Tyson Condie
and Neil Conway who built the Java-Overlog runtime.
This material is based upon work supported by the Na-
tional Science Foundation under grant Nos. IIS-0713661,
CNS-0722077 and IIS-0803690, the Air Force Office of
Scientific Research under Grant No. FA95500810352,
and gifts from Microsoft, IBM and Yahoo!. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of NSF or other institutions.

References

[1] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmele-
egy, Joseph M. Hellerstein, and Russell C Sears. BOOM
Analytics: Exploring Data-Centric, Declarative Program-
ming for the Cloud. InEuroSys ’10.

[2] George Candea, Stefan Bucur, and Cristian Zamfir. Auto-
mated Software Testing as a Service. InSOCC ’10.

[3] Tushar Chandra, Robert Griesemer, and Joshua Redstone.
Paxos Made Live - An Engineering Perspective. InPODC
’07.

[4] Byung-Gon Chun, Kuang Chen, Gunho Lee, Randy H.
Katz, and Scott Shenker. D3: Declarative Distributed De-
bugging. UC. Berkeley Technical Report No. UCB/EECS-
2008-27, 2008.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. InSOSP ’03, pages 29–43.

[6] Salvatore Guarnieri and Benjamin Livshits. Gatekeeper:
Mostly Static Enforcement of Security and Reliability
Policies for JavaScript Code. InUsenix Security ’09.

[7] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SQCK:
A Declarative File System Checker. InOSDI ’08.

[8] James Hamilton. On Designing and Deploying Internet-
Scale Services. InLISA ’07.

[9] Alyssa Henry. Cloud Storage FUD: Failure and Uncer-
tainty and Durability. InFAST ’09.

[10] Charles Killian, James Anderson, Ranjit Jhala, and Amin
Vahdat. Life, Death, and the Critical Transition: Finding
Liveness Bugs in Systems Code. InNSDI ’07.

[11] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xi-
aochen Lian, Jian Tang, Ming Wu, M. Frans Kaashoek,
and Zheng Zhang. D3S: Debugging Deployed Distributed
Systems. InNSDI ’08.

[12] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang.
WiDS Checker: Combating Bugs in Distributed Systems.
In NSDI ’07.

[13] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Pet-
ros Maniatis, Timothy Roscoe, and Ion Stoica. Implement-
ing Declarative Overlays. InSOSP ’05.

[14] Om Malik. When the Cloud Fails: T-Mobile, Microsoft
Lose Sidekick Customer Data.http://gigaom.com.

[15] Lucas Mearian. Facebook temporarily loses more
than 10% of photos in hard drive failure. www.

computerworld.com.

[16] John Oates. Bank fined 3 millions pound sterling for data
loss, still not taking it seriously.www.theregister.co.
uk/2009/07/22/fsa_hsbc_data_loss.

[17] Xinming Ou, Sudhakar Govindavajhala, and Andrew W.
Appel. MulVAL: A logic-based network security analyzer.
In Usenix Security ’05.

[18] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter
Druschel. Using Queries for Distributed Monitoring and
Forensics. InEuroSys ’06.

[19] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lin-
tao Zhang, and Lidong Zhou. MODIST: Transparent
Model Checking of Unmodified Distributed Systems. In
NSDI ’09.

[20] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE:
A Lightweight, General System for Finding Serious Stor-
age System Errors. InOSDI ’06.

http://gigaom.com
www.computerworld.com
www.computerworld.com
www.theregister.co.uk/2009/07/22/fsa_hsbc_data_loss
www.theregister.co.uk/2009/07/22/fsa_hsbc_data_loss

