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Abstract framework would make it much simpler to implement or
eg)(grt some existing user-space techniques, such as Pro-

am Shepherding and Memcheck [17], to the kernel.

reover, existing dependability techniques based on

S itic instrumentation (i.e., requiring source code recom
'lfation) could be made transparent with DBI. For exam-
e, Byte Granularity Isolation [7], which isolates device
{ivers that are generated with a special compiler, could

adapted to use DBI on existing driver binaries.

his paper makes two contributions: 1) we identify the
1 Introduction challenges in comprehensively instrumenting operating

Dynamic binary instrumentation (DBI) entails monitoéySt?m kernellf,hand i)jwe prophose thﬁ (|1|e3|gn ofca novel
ing and potentially manipulating every instruction in a Bl framework that addresses these challenges. Compre-

existing binary before its execution. Several popul pnsive in-kernel DBI raises five key challenges outlined

frameworks, such as DynamoRIO [4], Pin [12], and Vapelow.
grind [14] make it easy to use DBI in user-level applicadetecting Kernel Execution A specific DBI tool might
tions, helping improve application dependability greatlpe interested in instrumenting a subset of kernel code,
For example, DBI is used by Memcheck to detect memsdch as driver code. However, ensuring comprehensive in-
ory errors [19], Program Shepherding to improve secstrumentation requires monitoring several data strusture
rity [11], and vx32 to enforce modularity [9]. and registers that can be modified whenever the CPU is
Unfortunately, these powerful debugging and securitynning in supervisor mode. Thus it is necessary for the
tools do not exist for operating system kernels. The rdegamework to interpose on all code running in supervisor
son is that existing DBI techniques that target kernel cod®de, i.e., the entire kernel must be instrumented. The re-
(e.g., JIFL [15] and PinOS [6]) are not comprehensivsulting challenge lies in detecting all kernel entry and exi
i.e., they are limited with respect to the code that thgpints.
cover. JIFL provides an API for instrumenting syste
calls. However, it does not cover interrupt handlers a
kernel threads. PinOS allows whole-system instrum

tati idi AP for inst ina K | cod aithfully emulating native handling of an interrupt raise
tation, providing an or instrumenting kernet co eduring instrumentation poses several challenges, such as
including interrupt handlers, and user-space code. Ho

; . . AR oviding a plausible exception stack frame.
ever, because PinOS relies on virtualization, it is only cé\¥- gap P

pable of instrumenting drivers for devices that the virtugloncurrency  Instrumenting a multithreaded kernel re-
machine monitor emulates. Since it is infeasible to em@uires careful management of shared data structures. We
late complex and proprietary hardware, PinOS’s approaddress the trade off between memory use, implemen-
precludes comprehensive instrumentation. A similar issi@ion complexity, and performance in designing a con-
arises with other virtual machine monitors [1] and emulgurrency strategy. Kernel preemption further complicates
tors [20] that use DBI. concurrency management.

This lack of coverage severely limits the utility of i”Reentrancy A region of code is non-reentrant when it
kernel applications of DBI. Without comprehensive coys ynsafe to begin executing it before other executions
erage, debugging tools that track memory are inaccurgi&he region have finished. Reentrancy is problematic
and security tools can easily be thwarted. Without bghen the instrumentation code needs to use the instru-
ing compatible with most device drivers, most driver coQgented code. The standard solution — reimplementing

cannot be debugged or secured — an unfortunate limiggn_-reentrant code — is not viable in the kernel.
tion because drivers often contain the most buggy code in

operating systems [8]. Code Cache Consistency Kernel code is copied before
A comprehensive in-kernel DBI framework would eninstrumentation. If the kernel code changes, e.g, on a

able many dependability-enhancing techniques. sucfgdule unload, then the instrumented copy rjeeds to be
updated. Moreover, changes to code permissions need to

Dynamic binary instrumentation (DBI) has been used
tensively at the user level to develop bug-finding and se
rity tools, such as Memcheck and Program Shepherdi
However, comprehensive DBI frameworks do not exist f
operating system kernels, thwarting the development
dependability and security tools for kernels. In this papéJ
we identify the key challenges in designing an in-kern

DBI framework and propose a design that addresses th

terrupts and Exceptions Comprehensiveness re-
ires instrumenting exception and interrupt handlers.



be identified and handled.
In the rest of the paper, we describe these issues and our User Code
design for addressing them in detail. Currently, we are if}g,, rsode

Below, we first provide some background on DBI. Supervisor

Mode OS Source Code
2 Background (kernel, drivers)
DBI implementations copy basic blocks of source code
(binary x86 code residing in memory that the program {}
counter normally points to) into aode cacheprior to <«— ,
their execution. A basic block is a straight-line sequence Code Cache > Dispatcher
of instructions that ends with a control transfer instruc- T
tion (CTI), suchagal |, ret, orjnp. The DBIim- j
plementation ensures that only cached code is executed. Interrupts |— Exceptions
To ensure that source code never executes, the DBI im-

plementation manipulates the CTls that terminate basic
blocks to return execution to thiispatcher If the CTI's Figure 1: The framework is activated by loading a kernel
target has already been copied into the cache, the aiedule that redirects all kernel entry points to the dis-
patcher transfers control to the target's copy. Otherwigdtcher (solid black arrows). Once the framework is ac-
the dispatcher interprets the target’s code, which inwhive, all supervisor-mode execution takes place in the dis-
finding the extent of the basic block starting at the targepatcher and the code cache. Interrupts are queued and
address. The block found by interpretation is copied int@eir handlers are dispatched at safe points. Exception
the code cache. Finally, the dispatcher transfers comtroh@indlers are dispatched immediately. The fat white ar-
the newly admitted block. row indicates that OS source code is copied into the code
. . cache.
3 Analysisand Design
We present the design of our DBI framework in terms of
the challenges outlined in Section 1. We also descripefiptor table maintained by the kernel; we point the de-
current approaches, their strengths, and their limitatiogcriptor table registers to these shadow tables. In the
Our design targets tHeng modeof the 64-bit x86 archi- shadow tables, each entry effectively calls dispatch on the
tecture [2], which we assume the instrumented operatié@fresponding entry point stored in the original descripto
system, once booted, runs in exclusively. This assumpti@®le. To maintain transparency, we replace source code
is valid in Linux, which we confirmed by manual inspecinstructions that read the descriptor table registers with

tion, and Windows [13]. code cache instructions that load the original tables’ ad-
_ ) dresses, which are stored in memory. Our framework in-
3.1 Detecting Kernel Execution tercepts changes to the original tables and propagates the

Interposing on all kernel execution requires each kerréélanges to the shadow tables. Furthermore, we replace
entry point to be replaced with a call to the dispatchepde that changes the table descriptor registers in the code
(see Figure 1). We define kernel entry points as af§che with instructions that update the shadow registers.
instructions that run immediately after escalation of th&e shadow the MSRs used bysent er andsyscal |
CPU's current privilege level (CPL). In the 64-bit x86 arin the same way as the descriptor table registers.
chitecture, only interrupts, theyscal | instruction, the ~ The kernel can be exited byysexit, sysret,
sysent er instruction, certain fay np instructions, and i ret, andr et instructions. To resume native execu-
certain farcal | instructions can escalate the CPL [2fon after exiting the kernel viaysexi t andsysr et ,

(see [18] for a more concise explanation). In the casg replace these instructions in the code cache with se-
of interrupts, far jumps, and far calls, the entry point guences that exit the code cache in a manner that informs
stored in one of three descriptor tables. The addressit# dispatcher to natively execitgsexi t andsysr et

each of these tables is stored in one of three correspofgspectively. Section 3.2 explains how we haridiet .

ing descriptor table registers. Inthe casspécal | and The dispatcher identifies kernel exits caused byr far
sysent er, the entry point is stored in a model-specifithstructions.

register (MSR). To execute the dispatcher on kernel eng)é
points, instead of executing the entry points directly, we
shadowthe descriptor tables and the MSRs. The basic DBI technique rewrites CTls to ensure that ex-

We maintain ashadow descriptor tabléor each de- €cution stays in the code cache or is redirected to the dis-
patcher. However, this technique is not adequate for inter-

Interrupts and Exceptions



posing on control flow that does not arise from CTls, sudstruction in a basic block being interpreted resides on a
as interrupts and exceptions. non-executable page, then a page fault will be triggered.
When an interrupt or exception is delivered, control 3Bl frameworks handle this situation by executing the
redirected to the installed handler. We defingrrupts instructions preceding the faulting instruction. Once the
to be asynchronous events, not caused by any partictidaiting instruction is reached, the instrumented copy of

instruction, that redirect execution to their handlers. Whe original handler is executed.
defineexceptiongo be synchronous events, triggered b

instruction execution, that immediately invoke their harKnterrupts and Exception Design  We m'ferpept Inter-
dlers. The key distinction between the two is that inteftPts by replac!ng the operatmg system's |nterrl_th han-
rupts can technically be handled at any time whereas GI€rs (see Section 3'1)'d If trt:e mterrg_pted mha(r:]hlrlle stalt’e
ceptions must be handled before the triggering instructif@s "Unning in user mode, then we dispatch the kernel's
can proceed. For example, an instruction that accesSig/Tupthandlerimmediately (in this case, the intereapt

memory and triggers a page fault exception cannot cofate .is native). _Otherwise, our framgwork atomically
plete until the page fault is handled. adds intercepted interrupts to a CPU-private queue by dis-

abling interrupts. Once queued, we enable interrupts and
Interrupts and Exception Analysis To interpose on return execution to the interrupted instruction. When ex-
handlers, DBI frameworks install their own handlers thatution next exits the code cache, instead of dispatching
invoke the dispatcher on the original one (unless the intéie next target, the dispatcher delivers queued interrupts
rupt or exception was caused by the DBI framework). by dispatching on the kernel’s interrupt handlers. Once
Because handlers can inspect machine state at the the-dispatcher empties the queue, it dispatches the next
ment before their invocation, DynamoRIO, Pin, PinO%arget.
and Valgrind take care to present plausible machine statén the code cache, we replace et instructions with
—i.e., machine state that could have been observed duemgs to the dispatcher. Following a code cache exit caused
native execution. This precaution is essential for corrdmt ani r et , if the interrupted machine state was running
execution. For example, Linux's page fault handler inn user mode, the dispatcher natively executest , oth-
tentionally panics if a page fault exception arises in tlegwise it continues delivering queued interrupts.
kernel unless the triggering instruction has a pre-allowedWhen dispatching on the kernel’s interrupt handlers, we
address [3]. Under the control of a DBI framework, thiake care to emulate machine state that would have been
pre-allowed instruction never executes — only its copy @xposed to the interrupt handler during native execution.
the code cache. Hence, to avoid causing a kernel pahiterrupt handlers can expect native machine state and an
the interposing handler has to translate the code cacheiatkrrupt stack [2]. However, translating interrupted ma-
dress of the faulting instruction to the source instructiorchine state only requires translating the code cache ad-
address before invoking the kernel’s page fault handlerdress; we do not need to translate other registers because
Presenting plausible machine state is tricky, particylaihterrupts are only delivered at code cache exits (i.e., not
if an interrupt or exception arises during the execution wf the middle of instrumentation). Once the machine state
instrumentation code or the dispatcher. In this case, thdranslated, we create the interrupt stack.
interrupted instruction has no corresponding source codeQur framework handles exceptions triggered during
thus translation to the source code address is impossiblede cache execution immediately. Because machine
To circumvent this problem, DBI frameworks queue irstate might be modified by instrumentation code, we must
terrupts and deliver them at the next code cache exit. translate all machine state. Similar to DynamoRIO, we
Exceptions are handled differently since they cannot bequire the instrumentation code to implement a transla-
delayed. Exceptions triggered by instrumentation cotien callback function: given the triggering instruction,
are handled by restoring native machine state — analogthescallback should restore any native state it changed up
to how x86 hardware delivers precise exceptions [10]te-that point.
and invoking the instrumented copy of the original han- Like other DBI frameworks, we only expect exceptions
dler. DynamoRIO requires framework users to implemeintthe dispatcher while interpreting code. In this case, the
callback functions that translate machine state when elkspatcher admits a copy of the code up to the exceptional
ceptions arise during instrumentation code. These catistruction into the code cache and executes that copy be-
back functions restore registers used by the instrumerftare invoking the instrumented exception handler.
tion code and provide a source code address for the faultTo prevent page fault exceptions while fetching dis-
ing instruction. PinOS provides instrumentation APIs thpatcher and code cache instructions, the dispatcher and
automatically perform the required rollback. code cache are stored in page frames that are always
For the most part, DBI frameworks avoid triggering exgresent in all processes’ page tables. We assume that the
ceptions in their dispatchers. However, some excepti@perating system makes such page frames available, an
are unavoidable during interpretation. If, for example, assumption which holds in Linux [3] and Windows [16].



3.3 Concurrency native machine state before delivering interrupts and ex-
DBI frameworl&f"ptions' We avoid the second problem by always storing

To handle multithreaded code correctly, do add q q he add
must ensure that the dispatcher and execution in the c§gree code addresses, and not code cache addresses, on

cache behave in a thread-safe manner. Concurrency pfgf-Stéck: we emulateal | andr et by pushing and pop-
lems arise in the dispatcher when it is used by mulfing source addresses and calling thg dispatcher; as Sec-
ple threads. For example, updates to shared data Strtlﬂfl 3.2 explains, we ensure tf]af[ the mter_ru_pt St?C" con-
tures, such as the map of source-code addresses to CBadggsource addre_sses. JIFLs mcompat_lbmty W'th pre-
cache addresses, cannot conflict. Concurrency proble‘?‘ﬂ%onble kernels arises f_rom not interposing on Interrupt
arise during code cache execution because the code inh[ﬂ dlers.hnor(lj-gatlve register va(ljues r;:ay be kexposed and
cache contains, in addition to instrumented source cof8Y€ cacne addresses are save on the stack.

accesses to data structures shared with the dispatcher3 4 Reentrancy

Concurrency Analysis Valgrind simply serializes all The problem of reentrancy arises for a DBI framework
thread execution. In the other user-space frameworks, twien its own interpretation code uses library code that it is
approaches are taken to managing concurrency: threiadhe middle of interpreting, for example, heap allocation
private data and locking. In the former approach, eaohl/O.

thread has its own priv:_;tte code cache and .auxiliary dﬁ@entrancy Analysis DBI frameworks avoid this prob-
structures. In the locking approach, data is shared g, by only using code that they do not interpret, i.e.,
tween threads and locks are employed to ensure c@fsir own code and the systems beneath them. Because
rect access. Thread-private data avoids locking ovgfe yser-space frameworks do not interpret kernel code,
heads Whereas Iock_lng avoids redundant mterpretatm@y can safely make system calls. The VMM-based ap-
and copying. In practice, the thread-private data approggiaches can make use of the VMM itself and virtual ma-
is only suitable for programs with a small number Afyines other than the one being instrumented (e.g., PinOS
threads or programs in which threads access dispaaigrorms all 1/0 through Xen’s Domain 0 guest). Because
code, such as desktop applications [5]. JIFL does not sit atop a VMM, it must be entirely self
Kernel DBI frameworks have another concurrengyyiicient; JIFL only relies on resources that it allocates
management technique at their disposal: CPU-privgifen it initializes (i.e., before interpretation begin3p

data (without control over preemption points, user-spagerform 1/0, JIFL must first suspend instrumentation.
frameworks cannot reliably use CPU-private data). Each

CPU has its own private code cache and auxiliary d4ggentrancy Design  Our design avoids problems aris-
structures. This approach avoids locking while boundiffgg from non-reentrantfunctions by not calling any instru-
redundant interpretation and copying. JIFL, which usg_ganted code from the dispatcher. To accomplish this, the

CPU-private data, does not work with preemptible vaffispatcher is entirely self contained. Specifically, the di
ants of the Linux kernel. however. patcher has its own memory allocator. To facilitate 1/0O,

we designed our framework to attach and detach from a

Concurrency Design  Because many threads run insideunning system. To attach, we load a kernel module that
the kernel (i.e., all user and kernel threads), using threadtifies each CPU to run an initialization routine that cre-
private data would have high memory and interpretatiaites the CPU’s private data structures, shadows the de-
overheads. On the other hand, good performance fogatiptor tables, and calls dispatch on the initialization-r
lock-based approach is contingent on a sophisticated lotike's next instruction. To detach, on each CPU, we re-
ing strategy [5]. Because of reentrancy problems, the kptace shadowed registers with their native contents and
nel’s locking facilities cannot be used, so all of the rgeturn execution to the next source code instruction.
quired locks would have to be implemented from scratch. ,
Instead, we have elected to use CPU-private data. E&ch Code Cache Consistency
CPU has a private dispatcher and private code cache. To faithfully emulate the native execution of the code be-

Unlike JIFL, our DBI framework works with pre-ing instrumented, DBI frameworks must ensure that the
emptible kernels. The CPU-private data approach is sende cache is kept consistent with source code. If some
sitive to preemption if any CPU-private machine state $durce code is modified after it has been copied into the
saved when the preempted task context switches. In tbéghe, then the cached code is no longer valid. Likewise,
case, if the preempted task later resumes on another CPldpme source code becomes non-executable, then any
then the task will use the wrong CPU'’s private data. Twaached blocks derived from it are no longer valid. Reli-
problems cause CPU-private state to be saved: exposiralply detecting when source code and permissions change
register temporarily holding CPU-private data to the ins a complex matter. Consequently, the aforementioned
terrupt handler or storing a code cache address on freameworks maintain code cache consistency to various
stack. Our design avoids the first problem by restoringgrees (DynamoRIO, Valgrind, PinOS) or have no de-
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