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Limitations of Data-Centric
Programming Models

e Data-centric programming models (MapReduce, Dryad
etc.) are limited to data-parallelism in any phase.
= Two map operators cannot communicate with each other.

= This is mainly due to the deterministic-replay based fault-

tolerance model: Replay should not violate application
semantics.

= Consider presence of side-effects: Writing to persistent storage
or network based communication.

INPUT: The quick brown fox jumps over a lazy dog.

A

Execution 1:

The Quick Brown Fox
1 1 1 1
Execution 2:
The Quick Brown Fox Jumps Over A Lazy Dog

2 2 2 2 1 1 1 1 1



Need for side-effects

e Side-effects lead to communication/ data-
sharing across computations.

* Boruvka’s algorithm to find MST

= Each iteration coalesces a node with its closes
neighbor. Iterations which do not cause conflicts
can be executed in parallel.

Before coalescing After coalescing



Beyond Data Parallelism

 Amorphous Data Parallelism

= Most of the data can be operated on in parallel.

= Some of them conflict and can only be detected
dynamically at runtime.

 “The Tao of Parallelism”, Pingali et. al., PLDI’ 11
* The Galois system

* Online algorithms / Pipelined workflows

= MapReduce Online [Condie’10] is an approach
needing heavy checkpointing.
e Software Transactional Memory (STM)
Benchmark applications

= STAMP, STMBench etc.



System Architecture
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Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer



Semantics of TransMR (Transactional
MapReduce)
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Semantics Overview

* Data-Centric function scope -- Map/Reduce/
Merge etc. -- termed as a Computation Unit (CU))
is executed as a transaction.

e Optimistic reads and write-buffering. Local Store
(LS) forms the write-buffer of a CU.

= Put (K, V): Write to LS which is later atomically
committed to GS.

= Get (K, V): Return from LS, if already present;
otherwise, fetch from GS and store in LS.

= Other Op: Any thread local operation.

* The output of a CU is always committed to the GS
before being visible to other CU’s of the same or
different type.

= Eliminates the costly shuffle phase of MapReduce.



Design Principles

e Optimistic concurrency control over pessimistic
locking.
= No locks are acquired. Write-buffer and read-set is

validated against those of concurrent Trx assuring
serializability.

= Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

e Consistency (C) and Tolerance to Network Partitions
(P) over Availability (A) in CAP Theorem for Distributed
transactions.

= Application correctness mandates strict consistency of

execution. Relaxed consistency models are application-
specific optimizations.

= |[ntermittent non-availability is not too costly for batch-
processing applications, where client is fault-prone in itself.




Evaluation

* We show performance gains on two applications,
which are hitherto implemented sequentially
without transactional support

= Presence of Data dependencies.
= Both exhibit Optimistic data-parallelism.

e Boruvka’s MST

= Each iteration is coded as a Map function with input
as a node. Reduce is an identity function. Conflicting
maps are serialized while others are executed in
parallel.

= After niterations of coalescing, we get the MST of an
n node graph.

= A graph of 100 thousand nodes, with average degree
of 50, generated based on the forest-fire model.



Boruvka’s MST
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Speedup of 3.73 on 16 nodes, with less than 0.5 %
re-executions due to aborts.



Maximum flow using Push-Relabel
algorithm

Each Map function executes a Push or a Relabel
operation on the input node, depending on the
constraints on its neighbors.

Push operation increases the flow to a
neighboring node and changes their “Excess”

Relabel operation increases the height of the
input node if it is the lowest among its neighbors.
Conflicting Maps -- operating on neighboring
nodes -- get serialized due to their transactional
nature.

Only sequential implementation possible without
support for runtime conflict detection.
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Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a window of 40 iterations.



Conclusions

 TransMR programming model enables data-
sharing in data-centric programming models for
enhanced applicability.

* Similar to other data-centric programming
models, the programmer only specifies operation
on the individual data-element without

concerning about its interaction with other
operations.

* Prototype implementation shows that many
important applications can be expressed in this
model while extracting significant performance
gains through increased parallelism.



Thank You!

Questions ?



