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Limitations of Data-Centric 
Programming Models

• Data-centric programming models (MapReduce, Dryad 
etc.) are limited to data-parallelism in any phase.
 Two map operators cannot communicate with each other.
 This is mainly due to the deterministic-replay based fault-

tolerance model:  Replay should not violate application 
semantics.

 Consider presence of side-effects: Writing to persistent storage 
or  network based communication.



Need for side-effects

• Side-effects lead to communication/ data-
sharing across computations.

• Boruvka’s algorithm to find MST

 Each iteration coalesces a node with its closes 
neighbor. Iterations which do not cause conflicts 
can be executed in parallel.



Beyond Data Parallelism

• Amorphous Data Parallelism
 Most of the data can be operated on in parallel. 

 Some of them conflict and can only be detected 
dynamically at runtime.
• “The Tao of Parallelism”,  Pingali et. al.,  PLDI’ 11

• The Galois system

• Online algorithms / Pipelined workflows
 MapReduce Online [Condie’10] is an approach 

needing heavy checkpointing. 

• Software Transactional Memory (STM) 
Benchmark applications 
 STAMP, STMBench etc.



System Architecture
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Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer



Semantics of TransMR (Transactional 
MapReduce)



Semantics Overview
• Data-Centric  function scope -- Map/Reduce/ 

Merge etc. -- termed as a Computation Unit (CU)) 
is executed as a transaction.

• Optimistic reads and write-buffering. Local Store 
(LS) forms the write-buffer of a CU.
 Put (K, V):  Write to LS which is later atomically 

committed to GS.
 Get (K, V):  Return from LS, if already present; 

otherwise, fetch from GS and store in LS.
 Other Op:  Any thread local operation. 

• The output of a CU is always committed to the GS 
before being visible to other CU’s of the same or 
different type.
 Eliminates the costly shuffle phase of MapReduce. 



Design Principles
• Optimistic concurrency control over pessimistic 

locking.
 No locks are acquired. Write-buffer and read-set is 

validated against those of concurrent Trx assuring 
serializability.

 Client is potentially executing on the slowest node in the 
system; in this case, pessimistic locking hinders parallel 
transaction execution.

• Consistency (C)  and Tolerance to Network Partitions 
(P) over Availability (A) in CAP Theorem for Distributed 
transactions.
 Application correctness mandates strict consistency of 

execution. Relaxed consistency models are application-
specific optimizations.

 Intermittent non-availability is not too costly for batch-
processing applications, where client is fault-prone in itself.



Evaluation

• We show performance gains on two applications, 
which are hitherto implemented sequentially 
without transactional support 
 Presence of Data dependencies.
 Both exhibit Optimistic data-parallelism. 

• Boruvka’s MST
 Each iteration is coded as a Map function with input 

as a node. Reduce is an identity function. Conflicting 
maps are serialized while others are executed in 
parallel.

 After n iterations of coalescing, we get the MST of an 
n node graph.

 A graph of 100 thousand nodes, with average degree 
of 50, generated based on the forest-fire model.



Boruvka’s MST

Speedup of 3.73 on 16 nodes, with less than 0.5 % 
re-executions due to aborts.



Maximum flow using Push-Relabel
algorithm

• Each Map function executes a Push or a Relabel
operation on the input node, depending on the 
constraints on its neighbors.

• Push operation increases the flow to a 
neighboring node and changes their “Excess”

• Relabel operation increases the height of the 
input node if it is the lowest among its neighbors.

• Conflicting Maps -- operating on neighboring 
nodes -- get serialized due to their transactional 
nature.

• Only sequential implementation possible without 
support for runtime conflict detection.



Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a window of 40 iterations.



Conclusions
• TransMR programming model enables data-

sharing in data-centric programming models for 
enhanced applicability.

• Similar to other data-centric programming 
models, the programmer only specifies operation 
on the individual data-element without 
concerning about its interaction with other 
operations.

• Prototype implementation shows that many 
important applications can be expressed in this 
model while extracting significant performance 
gains through increased parallelism.



Questions ?

Thank You!


