
TransMR: Data Centric
Programming Beyond Data

Parallelism

Naresh Rapolu

Karthik Kambatla

Prof. Suresh Jagannathan

Prof. Ananth Grama

Limitations of Data-Centric
Programming Models

• Data-centric programming models (MapReduce, Dryad
etc.) are limited to data-parallelism in any phase.
 Two map operators cannot communicate with each other.
 This is mainly due to the deterministic-replay based fault-

tolerance model: Replay should not violate application
semantics.

 Consider presence of side-effects: Writing to persistent storage
or network based communication.

Need for side-effects

• Side-effects lead to communication/ data-
sharing across computations.

• Boruvka’s algorithm to find MST

 Each iteration coalesces a node with its closes
neighbor. Iterations which do not cause conflicts
can be executed in parallel.

Beyond Data Parallelism

• Amorphous Data Parallelism
 Most of the data can be operated on in parallel.

 Some of them conflict and can only be detected
dynamically at runtime.
• “The Tao of Parallelism”, Pingali et. al., PLDI’ 11

• The Galois system

• Online algorithms / Pipelined workflows
 MapReduce Online [Condie’10] is an approach

needing heavy checkpointing.

• Software Transactional Memory (STM)
Benchmark applications
 STAMP, STMBench etc.

System Architecture

…

N1 N2 Nn

Distributed

Execution Layer

Distributed

Key-Value Store

…

GS

CU

LS

CU

LS …

GS

CU

LS

CU

LS
…

GS

CU

LS

CU

LS

Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer

Semantics of TransMR (Transactional
MapReduce)

Semantics Overview
• Data-Centric function scope -- Map/Reduce/

Merge etc. -- termed as a Computation Unit (CU))
is executed as a transaction.

• Optimistic reads and write-buffering. Local Store
(LS) forms the write-buffer of a CU.
 Put (K, V): Write to LS which is later atomically

committed to GS.
 Get (K, V): Return from LS, if already present;

otherwise, fetch from GS and store in LS.
 Other Op: Any thread local operation.

• The output of a CU is always committed to the GS
before being visible to other CU’s of the same or
different type.
 Eliminates the costly shuffle phase of MapReduce.

Design Principles
• Optimistic concurrency control over pessimistic

locking.
 No locks are acquired. Write-buffer and read-set is

validated against those of concurrent Trx assuring
serializability.

 Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

• Consistency (C) and Tolerance to Network Partitions
(P) over Availability (A) in CAP Theorem for Distributed
transactions.
 Application correctness mandates strict consistency of

execution. Relaxed consistency models are application-
specific optimizations.

 Intermittent non-availability is not too costly for batch-
processing applications, where client is fault-prone in itself.

Evaluation

• We show performance gains on two applications,
which are hitherto implemented sequentially
without transactional support
 Presence of Data dependencies.
 Both exhibit Optimistic data-parallelism.

• Boruvka’s MST
 Each iteration is coded as a Map function with input

as a node. Reduce is an identity function. Conflicting
maps are serialized while others are executed in
parallel.

 After n iterations of coalescing, we get the MST of an
n node graph.

 A graph of 100 thousand nodes, with average degree
of 50, generated based on the forest-fire model.

Boruvka’s MST

Speedup of 3.73 on 16 nodes, with less than 0.5 %
re-executions due to aborts.

Maximum flow using Push-Relabel
algorithm

• Each Map function executes a Push or a Relabel
operation on the input node, depending on the
constraints on its neighbors.

• Push operation increases the flow to a
neighboring node and changes their “Excess”

• Relabel operation increases the height of the
input node if it is the lowest among its neighbors.

• Conflicting Maps -- operating on neighboring
nodes -- get serialized due to their transactional
nature.

• Only sequential implementation possible without
support for runtime conflict detection.

Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a window of 40 iterations.

Conclusions
• TransMR programming model enables data-

sharing in data-centric programming models for
enhanced applicability.

• Similar to other data-centric programming
models, the programmer only specifies operation
on the individual data-element without
concerning about its interaction with other
operations.

• Prototype implementation shows that many
important applications can be expressed in this
model while extracting significant performance
gains through increased parallelism.

Questions ?

Thank You!

