TransMR: Data Centric Programming Beyond Data Parallelism

Naresh Rapolu Karthik Kambatla Prof. Suresh Jagannathan Prof. Ananth Grama

Limitations of Data-Centric Programming Models

- Data-centric programming models (MapReduce, Dryad etc.) are limited to data-parallelism in any phase.
 - Two map operators cannot communicate with each other.
 - This is mainly due to the deterministic-replay based faulttolerance model: Replay should not violate application semantics.
 - Consider presence of side-effects: Writing to persistent storage or network based communication.

INPUT: The quick brown fox jumps over a lazy dog.

Execution 1:

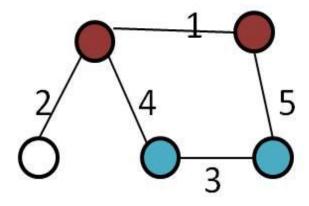
The	Quick	Brown	Fox
1	1	1	1

Execution 2:

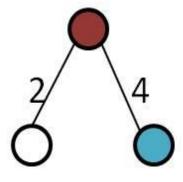
The	Quick	Brown	Fox	Jumps	Over	Α	Lazy	Dog
2	2	2	2	1	1	1	1	1

Need for side-effects

- Side-effects lead to communication/ datasharing across computations.
- Boruvka's algorithm to find MST
 - Each iteration coalesces a node with its closes neighbor. Iterations which do not cause conflicts can be executed in parallel.



Before coalescing

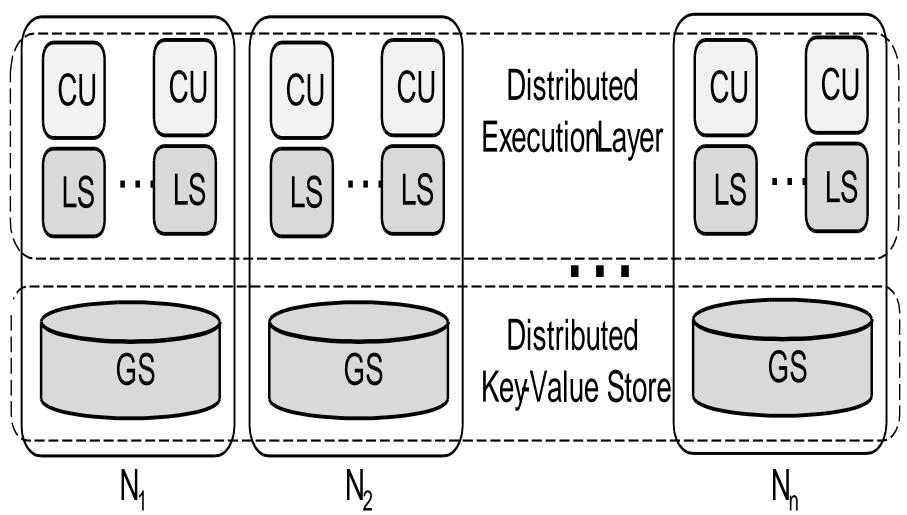


After coalescing

Beyond Data Parallelism

- Amorphous Data Parallelism
 - Most of the data can be operated on in parallel.
 - Some of them conflict and can only be detected dynamically at runtime.
 - "The Tao of Parallelism", Pingali et. al., PLDI' 11
 - The Galois system
- Online algorithms / Pipelined workflows
 - MapReduce Online [Condie'10] is an approach needing heavy checkpointing.
- Software Transactional Memory (STM) Benchmark applications
 - STAMP, STMBench etc.

System Architecture



Distributed key-value store provides a shared-memory abstraction to the distributed execution-layer

Semantics of TransMR (Transactional MapReduce)

$$LocalStore := \{\Sigma_1, ..., \Sigma_m\}$$
(1)

$$GlobalStore := \{\Gamma\}$$
(2)

$$\sigma \in \Sigma = L \to Z$$
(3)

$$\gamma \in \Gamma = L \to Z$$
(4)

$$Fn := \{f_m, f_r\}$$
(5)

$$f \in Fn := Atomic\{Op^*\}$$
(6)

$$Op := Get \ k|Put(k, v)|Other(7)$$

$$b \in Boolean := \{True, False\}$$
(8)

$$k, v \in Values := \{b, UnObservable\}$$
(9)

$$l := [v_1, ..., v_n]$$
(10)

 $l, \sigma \implies \sigma(l)$ (LOCAL) $l, \gamma \implies \gamma(l)$ (GLOBAL) map $f_m \bar{l}, \gamma \implies \bar{l}'', \gamma''$ fold $f_r \bar{l}'', \gamma'' \implies \bar{l}', \gamma'$ TMR $f_m \overline{f_r \bar{l}, \gamma} \implies \bar{l'}, \gamma'$ (TMR) if $(k \notin domain(\sigma))$ then $\sigma' = \sigma[k \mapsto \gamma(k)]$ else $\sigma' = \sigma$ $k, \sigma' \implies v$ (GET) $Get k, \sigma, \gamma \implies v, \sigma', \gamma$ $\sigma' = \sigma[k \mapsto v]$ (PUT) $Put(k,v), \sigma, \gamma \implies True, \sigma', \gamma$ (OTHER) $Other, \sigma, \gamma \implies UnObservable, \sigma, \gamma$ $Op_1, \sigma, \gamma \implies v_1, \sigma'_1, \gamma$ $Op_2, \sigma_1, \gamma \implies v_2, \sigma'_2, \gamma$ $Op_n, \sigma_{n-1}, \gamma \implies v_n, \sigma'_n, \gamma$ $\forall k_i \in domain(\sigma) \qquad m = |\sigma|,$ $\gamma' = \gamma[k_1 \mapsto \sigma(k_1), ..., k_i \mapsto \sigma(k_i), ...k_m \mapsto \sigma(k_m)]$ $Atomic(Op_1, Op_2, ..., Op_n), \gamma \implies v_n, \gamma'$ (FN)

(b) Semantics

(a) Syntax

Semantics Overview

- Data-Centric function scope -- Map/Reduce/ Merge etc. -- termed as a Computation Unit (CU)) is executed as a transaction.
- Optimistic reads and write-buffering. Local Store (LS) forms the write-buffer of a CU.
 - Put (K, V): Write to LS which is later atomically committed to GS.
 - Get (K, V): Return from LS, if already present; otherwise, fetch from GS and store in LS.
 - Other Op: Any thread local operation.
- The output of a CU is always committed to the GS before being visible to other CU's of the same or different type.
 - Eliminates the costly shuffle phase of MapReduce.

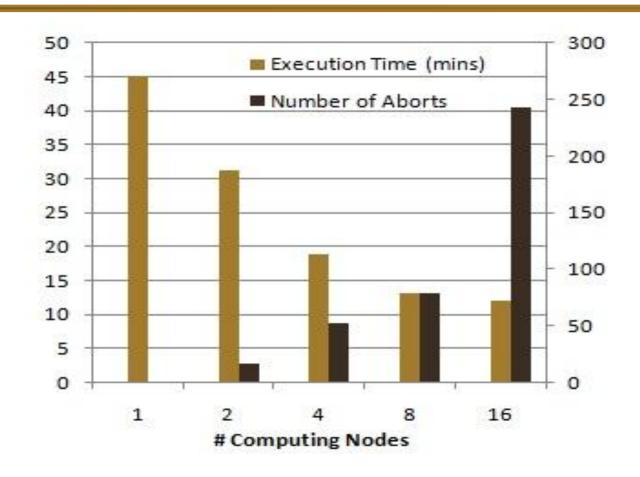
Design Principles

- Optimistic concurrency control over pessimistic locking.
 - No locks are acquired. Write-buffer and read-set is validated against those of concurrent Trx assuring serializability.
 - Client is potentially executing on the slowest node in the system; in this case, pessimistic locking hinders parallel transaction execution.
- Consistency (C) and Tolerance to Network Partitions
 (P) over Availability (A) in CAP Theorem for Distributed transactions.
 - Application correctness mandates strict consistency of execution. Relaxed consistency models are applicationspecific optimizations.
 - Intermittent non-availability is not too costly for batchprocessing applications, where client is fault-prone in itself.

Evaluation

- We show performance gains on two applications, which are hitherto implemented sequentially without transactional support
 - Presence of Data dependencies.
 - Both exhibit Optimistic data-parallelism.
- Boruvka's MST
 - Each iteration is coded as a Map function with input as a node. Reduce is an identity function. Conflicting maps are serialized while others are executed in parallel.
 - After n iterations of coalescing, we get the MST of an n node graph.
 - A graph of 100 thousand nodes, with average degree of 50, generated based on the forest-fire model.

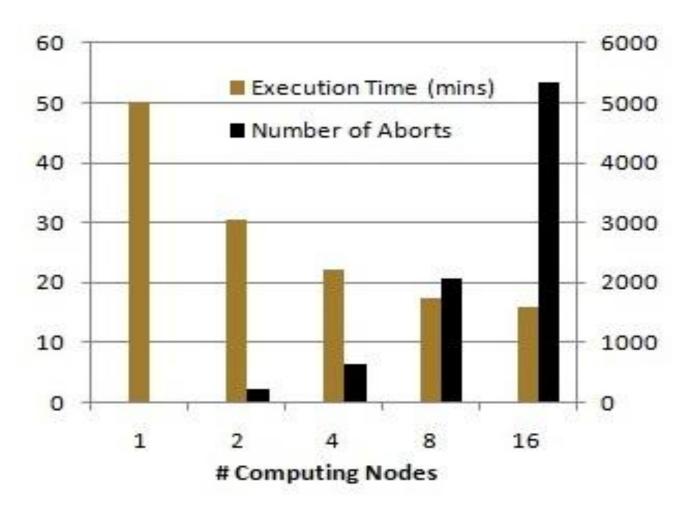
Boruvka's MST



Speedup of 3.73 on 16 nodes, with less than 0.5 % re-executions due to aborts.

Maximum flow using Push-Relabel algorithm

- Each Map function executes a Push or a Relabel operation on the input node, depending on the constraints on its neighbors.
- Push operation increases the flow to a neighboring node and changes their "Excess"
- Relabel operation increases the height of the input node if it is the lowest among its neighbors.
- Conflicting Maps -- operating on neighboring nodes -- get serialized due to their transactional nature.
- Only sequential implementation possible without support for runtime conflict detection.



Speedup of 4.5 is observed on 16 nodes with 4% re-executions on a window of 40 iterations.

Conclusions

- TransMR programming model enables datasharing in data-centric programming models for enhanced applicability.
- Similar to other data-centric programming models, the programmer only specifies operation on the individual data-element without concerning about its interaction with other operations.
- Prototype implementation shows that many important applications can be expressed in this model while extracting significant performance gains through increased parallelism.

Thank You!

Questions?