TransMR: Data Centric
Programming Beyond Data
Parallelism

Naresh Rapolu

Karthik Kambatla

Prof. Suresh Jagannathan
Prof. Ananth Grama

Limitations of Data-Centric
Programming Models

e Data-centric programming models (MapReduce, Dryad
etc.) are limited to data-parallelism in any phase.
= Two map operators cannot communicate with each other.

= This is mainly due to the deterministic-replay based fault-

tolerance model: Replay should not violate application
semantics.

= Consider presence of side-effects: Writing to persistent storage
or network based communication.

INPUT: The quick brown fox jumps over a lazy dog.

A

Execution 1:

The Quick Brown Fox
1 1 1 1
Execution 2:
The Quick Brown Fox Jumps Over A Lazy Dog

2 2 2 2 1 1 1 1 1

Need for side-effects

e Side-effects lead to communication/ data-
sharing across computations.

* Boruvka’s algorithm to find MST

= Each iteration coalesces a node with its closes
neighbor. Iterations which do not cause conflicts
can be executed in parallel.

Before coalescing After coalescing

Beyond Data Parallelism

 Amorphous Data Parallelism

= Most of the data can be operated on in parallel.

= Some of them conflict and can only be detected
dynamically at runtime.

 “The Tao of Parallelism”, Pingali et. al., PLDI’ 11
* The Galois system

* Online algorithms / Pipelined workflows

= MapReduce Online [Condie’10] is an approach
needing heavy checkpointing.
e Software Transactional Memory (STM)
Benchmark applications

= STAMP, STMBench etc.

System Architecture

e S—
CU @ CU @ Distributed | | CU @ i
— — ExecutionLayer | — |
DRCIIERD EREl

Distributed E i

E st E st KeyValue Storel [i

s Frommmmmmnn e R /

Nl NZ Nn

Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer

Semantics of TransMR (Transactional
MapReduce)

. . l,o =— o(l) (LocAL)
LocalStore = {Zy,..,] (1) Ly —> (D) (GLOBAL)
GlobalStore = {T} ()| |map fon Ly — 15" fold [, U n" — 1
TMR f,, f, L.~ — 1.~/
ceX = L=/ (3) (TMR)
if (k € domain(o)) then o' = ok — ~ (k)]
"}' £ F = L — Z [4} else o/ = o
kE.o! — v GET)
Fn = {fm-.fr} N Get k,o,v =— v,0',7 (GET
. L - ¥ : o' = ok — v]

fE Fn ' Aiﬂ?mc{()p } {m Put (k.v).o,v = True,o’,~ (PUT)
Op = GEt k‘PUt (k"T“)‘OHwT{m Other,o,v —> UnObservable, o, (OTHER)

be Boolean = {True,False} (8) Op1,0,7 = wv1,0%,5

OPQ,J]_:"';' — UZ'.'J;Z: i

: Tolioe — I . (
koveVaues = {b,UnObservable} (9) O n e o o
. Vk; € domain(o) m = |o|,
| = [‘1-’11 ---:’UTJ 0 | 27 = A ler s (k1) oo i 5 (i) o B 5 (o)
44?_"0”1?{3[: Opl'. Opzz"': Opn)" Y = Un, ,—.;."

(a) Syntax (FN)

(b) Semantics

Semantics Overview

* Data-Centric function scope -- Map/Reduce/
Merge etc. -- termed as a Computation Unit (CU))
is executed as a transaction.

e Optimistic reads and write-buffering. Local Store
(LS) forms the write-buffer of a CU.

= Put (K, V): Write to LS which is later atomically
committed to GS.

= Get (K, V): Return from LS, if already present;
otherwise, fetch from GS and store in LS.

= Other Op: Any thread local operation.

* The output of a CU is always committed to the GS
before being visible to other CU’s of the same or
different type.

= Eliminates the costly shuffle phase of MapReduce.

Design Principles

e Optimistic concurrency control over pessimistic
locking.
= No locks are acquired. Write-buffer and read-set is

validated against those of concurrent Trx assuring
serializability.

= Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

e Consistency (C) and Tolerance to Network Partitions
(P) over Availability (A) in CAP Theorem for Distributed
transactions.

= Application correctness mandates strict consistency of

execution. Relaxed consistency models are application-
specific optimizations.

= |[ntermittent non-availability is not too costly for batch-
processing applications, where client is fault-prone in itself.

Evaluation

* We show performance gains on two applications,
which are hitherto implemented sequentially
without transactional support

= Presence of Data dependencies.
= Both exhibit Optimistic data-parallelism.

e Boruvka’s MST

= Each iteration is coded as a Map function with input
as a node. Reduce is an identity function. Conflicting
maps are serialized while others are executed in
parallel.

= After niterations of coalescing, we get the MST of an
n node graph.

= A graph of 100 thousand nodes, with average degree
of 50, generated based on the forest-fire model.

Boruvka’s MST

50 300
m Execution Time (mins)

45
a0 W Number of Aborts - 250
- - 200
30

e - 150
20

15 I 100
- |i| III + 50

5

0 ' r y r - 0

1 2 - 8 16

Computing Nodes

Speedup of 3.73 on 16 nodes, with less than 0.5 %
re-executions due to aborts.

Maximum flow using Push-Relabel
algorithm

Each Map function executes a Push or a Relabel
operation on the input node, depending on the
constraints on its neighbors.

Push operation increases the flow to a
neighboring node and changes their “Excess”

Relabel operation increases the height of the
input node if it is the lowest among its neighbors.
Conflicting Maps -- operating on neighboring
nodes -- get serialized due to their transactional
nature.

Only sequential implementation possible without
support for runtime conflict detection.

60 6000

M Execution Time (mins)
50 5000

B Number of Aborts
40 4000
30 3000
20 2000
10 l 1000

0 T | 1 | 0
1 2 4 8 16

Computing Nodes

Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a window of 40 iterations.

Conclusions

 TransMR programming model enables data-
sharing in data-centric programming models for
enhanced applicability.

* Similar to other data-centric programming
models, the programmer only specifies operation
on the individual data-element without

concerning about its interaction with other
operations.

* Prototype implementation shows that many
important applications can be expressed in this
model while extracting significant performance
gains through increased parallelism.

Thank You!

Questions ?

