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The rise of infrastructure-as-a-service (IaaS) clouds,
both private and public, has created new problems in man-
aging large collections of virtual-machine (VM) images.
VM images must be kept up-to-date with security patches
and scanned for malicious or improperly licensed soft-
ware. Because images are bulky, attention must be paid
to the latencies of deployment and capture.

Large collections of VM images also present new op-
portunities which, while not completely realized today,
do not exist with collections of physical machines. Users
can search for images that contain the software they want,
configured as they want it. Collections can be mined for
patterns in order to answer questions like “which database
management systems does our company use?” Images
can be compared with one another.

This paper describes Mirage, an image library that ad-
dresses these problems and opportunities and is pluggable
into various clouds. Mirage stores images in a format that
indexes their filesystem structure, instead of as opaque
disk images. Like other libraries, Mirage provides fea-
tures for image capture and deployment. In addition, Mi-
rage maintains a provenance tree that records how each
image was derived from other images; allows operations,
like patching and scanning, that normally require a VM
instance to execute offline; and enables analyses such as
image search and comparison.

Other papers have used Mirage [16, 13, 17] or de-
scribed parts of the system [8]. This paper is the first
overview of the complete system. It also describes three
novel features that reduce the costs of translating between
disk images and the Mirage format: a content-addressed
store optimized for VM image data; a simple yet flexi-
ble indexer that supports a variety of filesystem and im-
age types; and delta deployment, which uses precomputed
deltas between images to speed up format conversions.
Finally, we relate our experience with Mirage in the IBM
Workload Deployer product (IWD) [3], which serves im-
ages to a customer’s own private cloud, and in the Re-
search Compute Cloud (RC2) [10], which is a production
IaaS cloud.

1 Overview of Mirage
Mirage is more sophisticated than the image libraries typ-
ically used in IaaS clouds. In addition to classic functions
like image browsing, access control and deployment, Mi-
rage provides offline image content introspection, and ma-
nipulation capabilities. This is enabled by indexing the

Figure 1: Mirage image format

file system contents of an image when it is added to the
Mirage library. The indexing process converts the im-
age to a format that exposes the internal structure of the
image, such as its partition layout, filesystem hierarchy,
and digests of its files (see Figure 1). This file-aware
format is a departure from the unstructured block-based
disk representations used in other image libraries, includ-
ing Moka5’s Engine [5, 11], its predecessor the Collec-
tive [2], Microsoft’s Machine Bank [15], and the Inter-
net Suspend/Resume system [12]. The advantage of a
file-aware format is that it naturally supports useful ad-
ministrative services such as governance (who did what
to which image when), software maintenance (offline se-
curity scan and certain kinds of patch operations), and an-
alytics (versioning, comparison, search).

Mirage provides a simple “checkin” and “checkout”
interface to transfer conventional disk images into and
out of the Mirage system. This interface is tuned for
high performance in several storage environments (e.g.
SAN/iSCSI/DAS with or without a clustered file system
like GPFS/VMFS), with overhead roughly equivalent to
a disk copy operation; some of our techniques for re-
ducing translation costs are described in Section 2. The
checkin/checkout interface makes it easy to integrate Mi-
rage into an existing data center or cloud.
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Figure 2: Mirage architecture

Figure 2 shows the components, described below, that
make up the Mirage system.
Content-addressed store The content-addressed store
(CAS) provides scalable, concurrent, garbage-collected
storage for arbitrary data. A CAS identifies each item
in the store by a cryptographically secure digest of its
contents (Mirage currently uses SHA1 [6] to compute di-
gests). Identical items have identical identifiers and there-
fore are only stored once. As the number of images in the
store grows, storage requirements grow more slowly with
Mirage than they do with libraries that store monolithic
disk images; for example, in the IBM Research Com-
pute Cloud (RC2), storage requirements are reduced by
a factor of 5 (see Section 3). The storage de-duplication
is done at the granularity of files instead of disks, which
has the benefit of not incurring overheads for storing disk
blocks that are unreachable from the file systems con-
tained within the disk.

The semantics of a CAS are write-once, as an item can-
not be modified without changing its identifier. Storing
a modified item creates a new item. Mirage’s version-
control system exploits the write-once semantics of the
CAS to retain old versions of images, although obsolete
versions can be explicitly removed from the CAS, which
makes them eligible for garbage collection.

Figure 1 shows the structure of an image as it is stored
in Mirage. Each node of the structure is stored as a sepa-
rate item in the CAS. The leaves are the contents of files
and interior nodes list the files in a filesystem partition
(partition manifests), describe a disk image (disk mani-
fests), or describe a VM image (image manifests). Mani-
fests reference other nodes by their CAS identifier.

As in a Merkle tree [4], the identifier of the root of the
structure (an image manifest) securely identifies the entire
structure. Mirage uses the image manifest’s identifier as
a serial number for the image, which fully determines the
software, disk layout, and other metadata of an image.

Image indexer The image indexer converts, in both di-
rections, between the disk images required by standard
hypervisors and the Mirage image format. The design of
the indexer addresses two technical challenges. First, the
indexer must support a number of disk and filesystem for-
mats. For this reason, the indexer has a plugin architec-
ture; Section 2 describes a technique called hybrid index-
ing, that reduces the effort of developing filesystem plug-
ins.

Another challenge is that converting a disk image to
the Mirage format and back does not produce a bit-for-
bit identical copy of the original. Because the indexer re-
stores the image by creating one or more empty filesys-
tems and then recreating the image’s files, the restored
file data can appear at different disk blocks than it did
in the original. This confuses boot loaders that load data
from particular disk blocks. One solution we use is for the
indexer to reconfigure affected boot loaders at checkout-
time. Hybrid indexing offers a more general solution (see
Section 2).

We have also experimented with block-based represen-
tations of disk images. Block-based representations allow
images to be reproduced faithfully but make fast file-level
operations on disk images harder to implement, because
filesystems generally do not allow applications to inspect
or control the assignment of file data to disk blocks; see
our earlier paper on the Mirage image format [8] for a dis-
cussion of how our file-aware format enables fast file-level
operations.
Catalog manager The catalog manager keeps metadata
about images in a relational database. For each image, this
metadata includes the image’s CAS identifier; the state of
the image (either “active” or “deleted from the CAS”); the
image’s creation time; if the image was derived from an-
other image, the identifier of the parent; and other fields.

The catalog manager also keeps version-control data.
Version control is based on named images. A named im-
age has a user-understandable name (as opposed to just a
CAS identifier) and a mutable list of image versions called
the version chain. Each image version is immutable and
has an associated image and a version number. At any
time, one image version is designated as the default ver-
sion: this is the version used by default when users check
out a named image. When a user creates a new version of
a named image, the image version is added to the version
chain and becomes the default version.

Access control operates at the level of named images.
Access control lists specify who may check out the named
image or check in new versions. Only the named image’s
owner or an administrator can alter the access control lists
or mark images in the version chain as “deleted”.

A user creates a new named image either by checking in
a brand new image or by deriving from an existing named
image. The creator is the owner of the new named image.
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Unwanted images can be marked as “deleted”, in which
case the image’s CAS data becomes eligible for garbage
collection. However, in order to preserve provenance
trees, the catalog never discards metadata.
Library services The library services component imple-
ments the user-visible and administrator-visible functions
of Mirage. The user-visible functions include checkin,
checkout, version control, virtual mount (see Section 2),
and analytics functions (describing, listing, comparing,
and searching images). The administrator-visible func-
tions include starting or stopping the Mirage server, con-
trolling garbage collection, locking selected images for
maintenance, and other administrative tasks.

2 Mitigating translation costs
Because Mirage’s image format differs from the for-
mats that hypervisors require, Mirage imposes transla-
tion costs. The runtime costs of indexing filesystems and
recreating disk images are obvious, but there are also the
development costs of supporting a multiplicity of image
formats and filesystem types. This section describes three
ways that we reduce runtime costs — a structure-aware
CAS, virtual mount, and delta deployment — and one
way, hybrid indexing, that we reduce development costs.

The cost of recreating disk images can sometimes be
avoided by caching images. Although Mirage does cache
popular images, we focus here on optimizations that apply
even when such a cache would have a low hit rate.
Structure-aware CAS Mirage stores indexed images in a
CAS whose architecture is broadly similar to that of Plan
9’s Venti [7] and Foundation [9]. Content items, which
in Mirage are variably sized, are stored sequentially in
large volumes. An on-disk index maps each item’s con-
tent identifier to the item’s location in a volume. In Mi-
rage, volumes are sparse files and the on-disk index is a
directory-based search tree whose leaves are symlinks that
hold item locations. The index is slow but easy to update
concurrently because creating symlinks is atomic.

Indexed images are highly structured: an image mani-
fest references a disk manifests, each disk manifest ref-
erences partitions, some partitions reference filesystem
manifests, and each filesystem manifest references a large
number of file-content items. This structure is communi-
cated to the CAS; for example, when a filesystem mani-
fest is added to the CAS, the CAS also receives a list of
the file-content items referenced by the manifest.

Awareness of the structure allows the CAS to avoid al-
most all index lookups when retrieving an image. This is
an important optimization because index lookups, which
are essentially random, are costly for any on-disk in-
dex [9] and especially costly for our simple implementa-
tion. When an item that references other items is added to
the CAS, the CAS creates and stores a location table that
lists the locations of the item’s references. Later, when

a client fetches an item from the CAS, it tells the CAS
if it intends to follow that item’s references. If so, the
CAS reads the item’s location table and caches the loca-
tions of all referenced items in memory, so that subse-
quent lookups avoid the on-disk index.

Foundation has a similar optimization, but Foundation
associates lookup tables with content volumes instead of
with items. For image retrieval, our scheme has the ad-
vantage: the indexer can tell the CAS exactly which items
will be fetched next and the CAS can cache the locations
of exactly those items; by contrast, Foundation would
cache locations for items that will not be fetched. On
the other hand, Foundation’s scheme is more robust when
fetches do not follow the structure closely.

Structure-awareness has advantages beyond reducing
translation costs. The CAS uses the structure informa-
tion to garbage-collect obsolete images. Also, a generic
“push/pull” program copies images and other data struc-
tures between CAS instances by walking the structure;
this is useful for backup and for increasing availability.
Virtual mount Many operations on images, such as of-
fline patching, do not require entire disk images. Virtual
mount allows users to mount an image’s filesystems with-
out reconstructing the image’s disks. A FUSE [14] dae-
mon fetches items from the CAS on-demand. Writes are
buffered in a scratch area on disk; reading a special file
attribute flushes the buffered writes to the CAS, creates a
new filesystem manifest, and returns the new manifest’s
identifier. Another special file attribute exposes opera-
tions on the filesystem manifest: reading this attribute re-
turns the identifier of the file’s contents and writing an
identifier to this attribute atomically replaces the file’s
contents. Depending on the patch, Virtual mount yields
speedups between 2 and 8.5 for offline patching [17].
Delta deployment There is often a great deal of com-
monality among VM images in the library, in part be-
cause most images are produced by modifying existing
images. Delta deployment reduces disk-recreation costs
by exploiting this similarity.

To prepare for delta deployment, a preprocessing step
computes file-level deltas between pairs of similar disk
images. A file-level delta lists files that should be added,
modified, and deleted in a source image in order to pro-
duce a target image. For each added or modified file, the
delta specifies the file’s target metadata and, if the file is a
regular file, the identifier of its target contents.

As noted above, Mirage keeps a cache of popular disk
images. Normally, when a disk image is retrieved, Mi-
rage consults the cache: if the image is in the cache, a
clone is returned immediately; otherwise, the image must
be reconstructed. Delta deployment behaves differently
on cache misses. If the target image is not in the cache,
the cache is searched for a source image for which the
preprocessing step computed a delta that produces the tar-
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get image. If such a source image exists, it is cloned, the
delta is applied to the clone, and the clone is returned. The
cost of applying the delta is proportional to the size of the
delta, not to the size of the target image.

Deltas that involve deleting files create an opportu-
nity and a security problem. Normally, deleting a file
is a cheap operation because it changes the filesystem’s
namespace without overwriting the file’s data blocks. By
populating the cache with “superimages”, which do not
correspond to any image in the library but do contain
large numbers of popular files, and precomputing deltas
between superimages and real images, we can improve
the odds of being able to deploy via a delta without much
increasing the cost of applying deltas.

The security problem is that the target image will con-
tain data blocks that belonged to files that were deleted
from the source image. That is, information leaks from
the source to the target. Because of this problem, Mirage
applies deltas only when the user has permission to read
both the source and the target image.
Hybrid indexing Indexing refers to the process of check-
ing an image into the image library. Mirage supports a va-
riety of filesystems, including NTFS, Ext2 and its succes-
sors, Reiserfs, and AIX’s Mksysb. Most image library im-
plementations use a simple image indexing technique that
stores the image disk as an array of fixed size disk blocks.
A benefit of this approach is not having to deal with the
complexity of extracting individual files from the disk and
later re-assembling them when the image is checked out.
But the drawback of such an approach is that access to the
filesystem contents requires mounting each of the image
disks (to access the filesystem), every time the contents of
an image need to be scanned, queried, or manipulated.

Hybrid indexing is aimed at getting the best of both
worlds: access to individual files within an image with-
out having to re-assemble or mount it, but without the
complexity of dealing with the idiosyncracies of every
filesystem we may encounter in customer environments.
It lowers the development costs of supporting a broad
range of filesystems by offloading much of the work to
off-the-shelf backup and restore tools while still indexing
the filesystem structure.

Hybrid indexing processes a filesystem partition as fol-
lows. First, a clone of the partition is mounted. The in-
dexer walks the filesystem and adds each regular file it
finds to the CAS, recording the file’s identifier in a filesys-
tem manifest. The indexer walks the filesystem again, this
time truncating every regular file to size zero, taking care
not to disturb modification times. The result is a filesystem
skeleton. The skeleton is then backed up with an off-the-
shelf, filesystem-specific program, the backup is added to
the CAS, and its identifier is recorded in the manifest. Fi-
nally, the manifest is added to the CAS and its identifier
is returned.

Retrieval reverses the process. The skeleton is restored
with an off-the-shelf, filesystem-specific program. The
indexer walks the filesystem and restores the contents of
each regular file, taking care not to disturb modification
times.

Note that, because the backup and restore programs
faithfully record and reproduce all filesystem metadata,
the indexer need not understand the special features of
each filesystem (such as extended filesystem attributes in
Ext3 or directory junctions in NTFS). Also, if a certain
file’s data blocks should not be moved (perhaps because
the boot loader expects them at a certain location), then
that file can be added to a list of files that should not be
truncated. The backup and restore programs will ensure
that its blocks are restored correctly.

The Mirage image format normally records filesystem
metadata in the filesystem manifest, which makes it ac-
cessible to analyses and tools. With hybrid indexing,
most metadata is now in the backup of the skeleton. For-
tunately, skeleton backups are about the same size as
filesystem manifests; tools that require metadata can get
it cheaply by restoring this backup.

3 Experience
IBM Workload Deployer The Mirage image library is
used in the recently announced IBM Workload Deployer
(IWD) product, which is an enterprise cloud management
appliance [3]. Mirage provides a central image library that
is pluggable into the hypervisor platforms that customers
already have in their data centers. The use of Mirage in
these environments provided interesting lessons and in-
sights.

A first lesson is the importance of transport costs. Al-
though the diversity of hypervisor platforms poses many
technical challenges, the main issue is that the image li-
brary and the hypervisors do not necessarily share storage.
Potentially, each checkout moves a multigigabyte image
between library-reachable and hypervisor-reachable stor-
age. This adds latency and can overwhelm the available
network infrastructure. These problems are especially
acute in development and test environments, where check-
outs are more frequent than in production environments.

Fortunately, caching and delta deployment can lower
transport costs as well as translation costs. The key is
to cache images on hypervisor-reachable storage. This
is tricky in some environments and delta deployment re-
quires that some Mirage code run in the customer’s data
center, but the payoff is worth the complications.

A second lesson is the need for collaborative image
development. Enterprises often split IT responsibilities
among several teams. For example, at one customer,
one team maintains the operating system, another han-
dles middleware, and a third installs applications. Cur-
rently, only the operating system team produces images.
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To avoid a hard-to-manage profileration of images, the
other teams work on running instances: if the operating
system team releases a new image, the other teams must
create a new instance and reconfigure it from scratch.

Figure 3: A version control scenario

The version control features of Mirage can extend the
benefits of image-centric management to all three teams.
Figure 3 illustrates our approach. The OS team creates an
image A.0 (image A, version 0) and shares it with the mid-
dleware team. The middleware team clones A.0 to create
B.0 (a private copy), checks out an instance of B.0, installs
and tests the middleware, then checks in the resulting im-
age as B.1. The application team follows a similar process
to create image C.1.

Mirage tracks the links between these images, which
makes updates more manageable. If the OS team were to
update A.0 to A.1, the middleware team can be notified.
Using Mirage, the middleware team can compute a file-
level delta between A.1 and A.0, create B.2 by applying
the delta to B.1, test B.2 to verify that the patch worked
properly, and finally release B.2 to the application team.
RC2 Mirage serves as the image manager for the IBM
Research Compute Cloud (RC2) [10], a production cloud
used by IBM researchers and other employees world-
wide. From its general release in early April 2009 to early
March 2011, RC2 served 458 unique users. The image
repository had grown to 4890 images, of which 2170 were
active (available for use).

RC2 does not currently expose Mirage’s version control
facility to users of the cloud - it is only for internal admin-
istrative use in situations like image migration, which we
elaborate on later. However, there is evidence that ver-
sion control would be welcome for some cloud users: in-
spection of the provenance tree shows that some users roll
their own version control system by embedding version
numbers in image descriptions. However, three-fifths of
all images derive directly from a base image; as images
are immutable, this implies that most images are created
once and never updated. Note that users are encouraged

to store data (as opposed to software and configuration
information) outside of images, for which purpose RC2
provides block-level storage volumes similar to Amazon’s
EBS volumes [1]. The next release of RC2 plans to ex-
pose the Mirage version control features to cloud users in
addition to cloud administrators.

The repository occupied 7.29 TB of storage, an aver-
age of 1.5 GB per image (active or inactive). We checked
out a sample of active images and found that, on average,
checked-out images occupy 8.9 GB of disk space. The
fivefold compression comes from CAS deduplication and
from not storing disk blocks that are unreachable from an
image’s filesystems. Note that RC2 does not run garbage
collection, so inactive images also consume space.

However, the main benefit of Mirage for RC2 is in
maintaining images, not in saving space. Images are not
static objects; like physical machines, they require peri-
odic maintenance. The following example shows how
RC2 used virtual mount and version control to migrate
their entire image collection from one hypervisor to an-
other.

After a year of operation, RC2 decided to switch x86
hypervisors from Xen to KVM. Because RC2 is a pro-
duction system, the conversion needed to cause minimal
disruption to operations and to users. The goals were to
have no downtime, to minimize resource use, and to be
transparent to users. Ideally, users would not notice that
their images had been migrated from Xen to KVM.

The migration mounted each Xen image with virtual
mount, converted it to run on KVM, and saved the result
as a new image. A total of 419 Xen images were converted
to KVM. During this period, RC2 ran with full function-
ality and no noticeable performance degradation.

It took several tries to convert some images. Unex-
pected kernel versions, missing drivers, and other bugs
caused conversions to fail; after each failed conversion,
bugs were fixed and the conversion was rerun. Version
control was very useful in this migration scenario: each
patch created a new version (which could be analyzed)
without replacing the original. In addition to the rollback
capability, understanding what files were added, modified
and deleted between any pair of versions was valuable in
troubleshooting failures.

A total of 1120 images were created during the con-
version period (419 converted images, 355 failed conver-
sions, and 346 user-created images). Thanks to the CAS,
the repository grew a modest 293 GB. Storing each im-
age as disk images would have required 9.5 TB (8.5 GB
average image content * 1120).

4 Conclusion
We presented Mirage, an image library that, by storing
images in a format that indexes their filesystem structure,
speeds up image deployment and supports advanced fea-
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tures such as version control, fast offline operations, effi-
cient search, image comparison, and other analyses of im-
ages. Experience with deployments shows that this view
of images as structured data has real-world value.
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