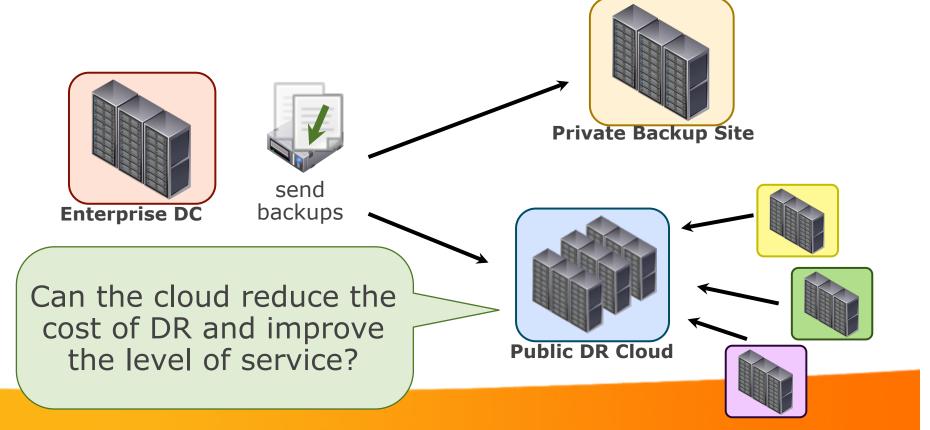
Disaster Recovery as a Cloud Service: Economic Benefits and Deployment Challenges

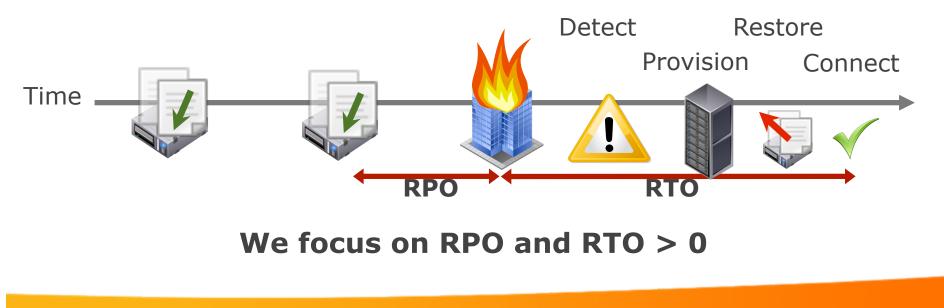
Tim Wood, Emmanuel Cecchet, KK Ramakrishnan*, Prashant Shenoy, Kobus van der Merwe*, and Arun Venkataramani

UMass Amherst and AT&T*


Data Center Disasters

- Disasters cause expensive application downtime
- Truck crash shuts down Amazon EC2 site (May 2010)
- Lightning strikes EC2 data center (May 2009)
- Comcast Down: Hunter shoots cable (2008)
- Squirrels bring down NASDAQ exchange (1987 and 1994)

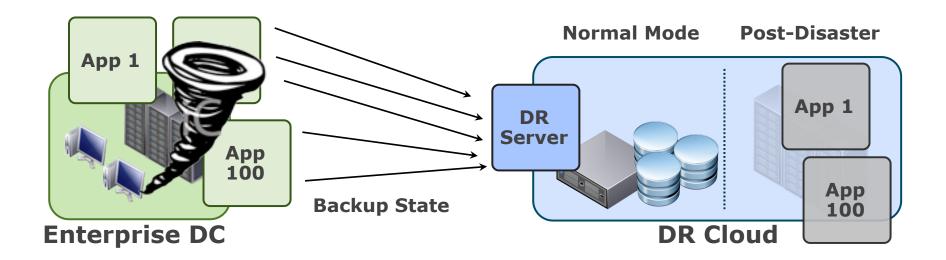
Disaster Recovery


- Use DR services to prevent lengthy service disruptions
- Long distance data backups + failover mechanism
 - Periodically replicate state
 - Switch to backup site after disaster

DR Metrics

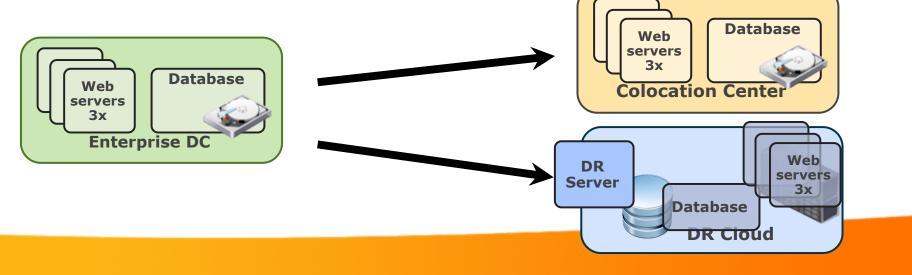
• DR Goal: minimize data loss, downtime, and cost

- Recovery Point Objective (RPO)
 - Amount of tolerable data loss
- Recovery Time Objective (RTO)
 - Acceptable system downtime


Why DR Fits in the Cloud

- **Customer**: pay-as-you-go and elasticity
 - "Normal" case is cheap (need few resources to make backups)
 - Lower cost for a given RPO
 - Can rapidly scale up resources after disaster is detected
 - Cloud's virtualized infrastructure reduces RTO
 - Can allow for **business continuity**
- **Provider**: High degree of multiplexing
 - Customers will not all fail at once
 - Can offer extra services like disaster detection

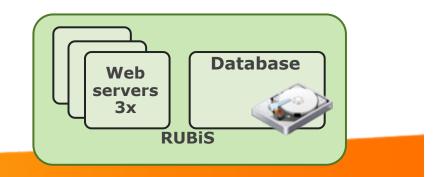
Is the cloud an economical platform for DR today? What additional features are needed?


DR on Demand

- Warm Backup Site
 - Cheaply synchronize state during normal operation
 - Obtain additional DR resources on demand after failure
 - Short delay to provision and initialize applications

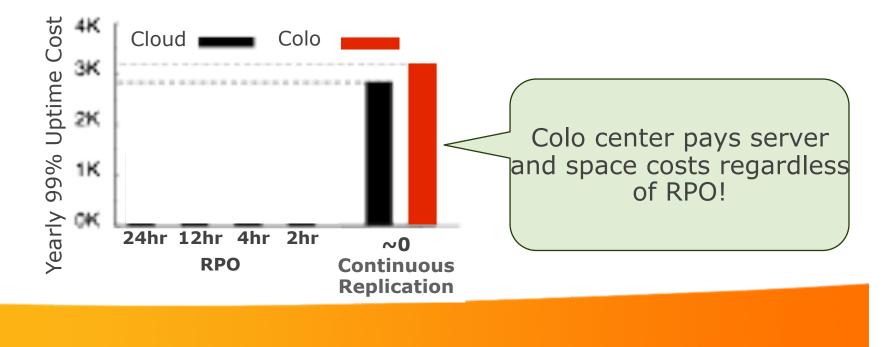
Cost Analysis Scenario

- Compare the cost of DR in Colocation center to Cloud
- Colo case pays for servers and space at all times
- Cloud DR only pays for resources as they are used
- Case 1: RUBiS ebay-like multi-tier web application
 - 3 web front ends
 - 1 database server
- Only database state is replicated


Cost Analysis: Colocation vs Cloud

Normal Case

 Resources needed 		Normal Case	Post-Disaster
to replicate DB state	Servers	colo = 4 servers cloud = 1 VMs	colo = 4 servers cloud = 5 VMs
 Post-Disaster 	Network	5 GB/day	180 GB/day
 Resources needed to run all application 	Colocation:	\$28.04/day	\$66.01/day
components	Cloud:	\$3.80/day	\$52.03/day


99% Uptime cost (3 days of disaster per year)

- Colo: \$10,373 per year
- Cloud: \$1,562 per year

RPO vs Cost Tradeoff

- Case 2: Data Warehouse
 - Post-disaster twice as expensive with Cloud
 - Cloud charges premium for high powered VM instance
 - Cloud still cheaper overall due to lower normal case costs
- Cloud allows tradeoff between RPO and cost
 - Only pay for DR server during periodic backups in cloud

Cost Analysis Summary

- Benefits of cloud computing depend on:
 - Type of resources required to run application
 - Variation between normal mode and post-disaster costs
 - RPO and RTO requirements
 - Likelihood of disaster

Cloud has greatest benefit when **post disaster** cost much **higher** than **normal mode**

Provider Challenges

Revenue Maximization

- Mainly makes income from storage in "normal" case
 - But must pay for servers and keep them available
- Can use pricing mechanism such as **spot instances**
 - Rent resources but be able to quickly reclaim for DR
- Rent priority resources at higher cost that are guaranteed to be available

Correlated Failures

- Large disasters could affect many customers simultaneously
- Cloud provider must
 - Use a risk model to decide how many resources to own for DR
 - Spread out customers to minimize impact of correlated failures

More DR Challenges

• Planning

 Use models to help understand tradeoff between cost and RPO/RTO for a given application and workload

• Efficient state replication

Minimize the bandwidth and cloud server costs in the normal case

Post Disaster Failover

- Enable business continuity by minimizing recovery time
- Automated/virtualized cloud infrastructure can lower RTO

Summary

- Cloud based Disaster Recovery
 - Can substantially reduce cost for customer
 - Particularly when server cost varies before/after disaster
 - Provides flexible tradeoff between cost and RPO
 - Can lower recovery time, enable business continuity
 - Provider must handle correlated failures
- Open challenges
 - How many resources must provider reserve for DR?
 - How to seamlessly transfer network connections?
 - How to fail back to primary site after disaster passes?

twood@cs.umass.edu

Cost Details

RUBiS	Public Cloud		Colocation	
	Replication	Failover	Replication	Failover
Servers	\$2.04	\$32.64	\$26.88	\$26.88
Network	\$0.54	\$18.00	\$1.16	\$39.14
Storage	\$1.22	\$1.39	-	-
Total per day	\$3.80	\$52.03	\$28.04	\$66.01
Total per year	\$1,386	\$18,992	\$10,234	\$24,095
99% uptime cost	\$1,562 per year		\$10,373 per year	

Data Warehouse	Public Cloud		Colocation	
	Replication	Failover	Replication	Failover
Servers	\$4.08	\$12.00	\$8.51	\$8.51
Network	\$0.10	\$0.12	\$0.22	\$0.26
Storage	\$3.50	\$3.92	-	-
Total per day	\$7.68	\$16.04	\$8.73	\$8.77
Total per year	\$2,802	\$5,853	\$3,186	\$3,202
99% uptime cost	\$2,832 per year		\$3,186 per year	

Enabling Business Continuity

- Business continuity allows applications to keep working after a disaster
 - Crucial for critical business/government services
- Virtualized cloud infrastructure can lower RTO
 - Automates VM creation and cloning
 - Cloud can also help with disaster detection
- Many remaining challenges
 - How to ensure application is revived in a consistent/correct state?
 - How to redirect traffic to failover site?

DR Requirements

- Recovery Point Objective (RPO)
 - Amount of tolerable data loss
- Recovery Time Objective (RTO)
 - Acceptable system downtime
- Performance
 - Impact on normal operation and after recovery
- Consistency
 - Correctness of application data and outputs
- Geographic Separation
 - DR site should not be affected by same disaster

What is the cloud good for?

- Cloud platforms are best for users who have variable needs over time
 - Customers only pay for what they use
 - Providers get economy of scale and can multiplex resources for many customers
- Applications well matched for the cloud:
 - Web sites with growing or variable demand
 - Infrequent compute intensive jobs (monthly payroll)
- and...
 - Disaster recovery!