Distributed Systems Meet Economics: Pricing in the Cloud

Hongyi Wang[†] Qingfeng Jing[‡] Rishan Chen° Bingsheng He[†] Zhengping Qian[†] Lidong Zhou[†] [†]Microsoft Research Asia [‡]Shanghai Jiao Tong University °Peking University

Presenter: Rishan Chen
Peking University and Microsoft Research, Asia
June 2010, Boston, MA

Cloud is a distributed system

- System metrics
 - Throughput
 - Latency / response time
 - Failure rate
 - Power consumption, etc.
- As a pay-as-you-go service
 - Two parties connected by the pricing scheme
 - It's all about the money!

Pricing in the Cloud

- It significantly changes the landscape of system design: Cost as an explicit and measurable system metric
 - How both parties optimize their logic
 - Is the pricing fair
 - How does the pricing interplay with the evolving system dynamics
 - How to measure the cost of failures, etc.

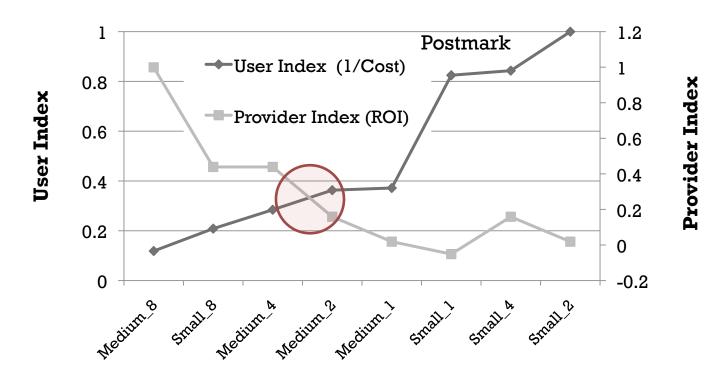
Methodology overview

- Approximate a typical workload in current cloud computing
 - Postmark (I/O-intensive)
 - PARSEC: Dedup, BlackScholes (CPU-intensive)
 - Hadoop (large-scale data processing)
- Complementary approaches for evaluations
 - A black-box approach with Amazon EC2
 - Built a cloud-computing test bed, *Spring*, to perform fully controlled experiments

Preliminary results

- Pricing may give different indices for users and providers for system optimizations (e.g., consolidation)
- System performance variations may lead to pricing fairness issues
- System evolution (e.g., adoption of new hardware like SSD) may affect pricing scheme
- Failures need to be better dealt with regarding to the cost

Highlights of our study / l


Pricing (profit) versus throughput

Number of concurrent	One VM	Two VMs	Four VMs
VMs			
Average cost per task	0.004	0.004	0.012
(\$)			
Profit (\$)	-0.009	0.002	0.028
Throughput (tasks/h)	28.3	56.4	33.9

Run Postmark continuously and report the number for four tasks; we compare the consolidation of x VMs on a single physical machine.

Highlights of our study /2

 Optimizing for cost versus optimizing traditional system metrics

Highlights of our study /3

Pricing fairness: performance variation

	Postmark	Dedup	BlackScholes
cv	9.1%	11.0%	3.9%
maxDiff	40.1%	38.8%	12.6%

Table 8: Variation of different runs on EC2

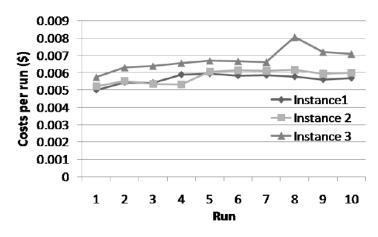


Figure 2: Variations among three instances (Postmark)

Open questions

- What are good properties for a pricing scheme?
- How do users and providers adapt the system design to evolving and even hybrid pricing schemes?
- How is the pricing scheme adapted to the evolving system dynamics and (new) technologies?
- How to deal with failures' cost regarding to the pricing?

Related work

- Other pricing schemes
 - Bilateral
 - Amazon EC2 Spot Instances: Enable you to bid for unused Amazon EC2 capacity
 - Navraj Chohan, et al., See Spot Run: Using Spot Instances for MapReduce Workflows, June 2010
 - Microsoft SQL Azure: Make pricing more scalable and more predictable
- Distributed computing w/ Economics
 - Jim Gray, Distributed Computing Economics, March 2003
 - Ang Li, et al., CloudCmp: Shopping for a Cloud Made Easy, June
 2010

Summary

- Pricing is an important bridge between users and providers
- It significantly changes the dynamics in system design
- The interplay between economics and system design can be a fruitful research direction