CiteSeer^x: A Cloud Perspective

Pradeep Teregowda, Bhuvan Urgaonkar, C. Lee Giles Pennsylvania State University

Problem Definition

Question: How to effectively move a digital library, CiteSeer^x, into the cloud

Which sections, components, or subset of CiteSeer^x could be most cost effective to move?

Our contribution – analysis from an economic perspective.

Solve by decomposing the application across

Components

Content

Peak load hosting

SeerSuite - CiteSeer^x

SeerSuite

Framework for digital libraries

Flexible, Scalable, Robust, Portable, state of the art machine learning extractors, open source – use.

⊠CiteSeer[×]

Instance/Application of SeerSuite.

Collection of

▼> 1.6 million documents

Approximately 2 million hits per day

SeerSuite Architecture

 Web Application
Focused Crawler
Document Conversion and Extraction
Document Ingestion

Data Storage

Maintenance Services

Federated Services

Hosting models

Component hosting

SeerSuite is modular by design and architecture, host individual components across available infrastructure.

Content hosting

- CiteSeerx provides access to document metadata, copies and application content
- Host parts or complete set.
- Peak load loading
 - Support the application during peak loads
 - Support growth of traffic.

Component Hosting

SeerSuite/CiteSeer[×] is modular by design, composed of services which can be hosted in the cloud.

Expense of hosting the whole of CiteSeer^x is prohibitive.

Solution: Host a component or service i.e.,

Component/service code

☑ Data on which the component acts

Interfaces, etc. associated with the component

Goal: Identify optimal subset/components.

Component Hosting - Costs

	Component	Amazon EC2			Google App Engine			
		Initial		Monthly Costs	Initial	Monthly Costs		
	Web Services		0	1448.18	0	942.53		
	Repository		0	1011.88	163.8	593.21		
	Database		0	858.89	12	348.05		
	Index		0	527.08	3.1	83.48		
	Extraction		0	499.02	0	90.6		
	Orawici		0	513.4	0	105		
Most expensive - host web services.								

Component Hosting – Lessons Learned

Hosting components is reasonable

Having a service oriented architecture helps

Amazon EC2

Computation costs dominate.

Google App Engine

■ Refactoring costs ?

Refactoring required not just for component, but other services.

Storage and transfer costs maybe optimized

A study of data transfer in the application gives insights to costs.

Approach suitable for meeting fixed budgets

How many components of an application can be hosted for a fixed budget.

Content Hosting

Approach: Identify specific content

Static Web Application content

Javascript

Stylesheets

Mimages/Graphs.

Repository content

₩ PDF files

Current Size: 1 terabyte

- **W**Database content

☑ Current size: 120 gigabytes

Analysis of Content Hosting

Examining the traffic (requests) at peak loads.

- Requests for stylesheets, images, javascript account for most of the requests.
- The size of these files is 2.2 MB
- Since these files are embedded in almost every web page, bandwidth consumed 390.3 GB.
- Costs < 142 dollars.
- Simpler to deploy
 - Move files to the cloud, update references to them in the presentation layer.

Content Hosting – Lessons Learned

Hosting specific content relevant to peak load scenarios

Easy to do – minimal refactoring required, affects a minimal set of components (presentation layer).

More complex scenarios need to be examined

- Hosting papers from the repository
- Hosting shards of the index
- ☑ Database

Peak Load Hosting

Part of the load can be handled by an instance hosted in the cloud

Approach

K Look at various percentiles of the load (90%)

Consider utilizing the cloud instance only at loads exceeding these percentiles.

Peak Load Hosting - Costs

Costs		Quantity	Amazon	Google
Initial Setup	Data In	1820.4 GB	0	182
Monthy	Stored	1820.4 GB	182.4	273.06
	Data In	14.78 GB	0	1.48
	Data Out	298.7 GB	44.8	35.84
	Transaction	368 TPS	9.27	0
	CPU	70 HRS	285.6	7
Total (Montly)			521.7	317.38

CPU and Data Transfer costs dominate.

Peak Load – Lessons Learned

Hosting only during peak load conditions is economically feasible.

Growth potential

- Can be used to handle growth in traffic, instead of procuring new hardware.
- Hosting a specific component under stress; such as a database
 - In such a case it will cost 385 dollars to host the database in Amazon EC2.

Conclusions

SeerSuite/CiteSeer^x and different approaches were proposed for hosting CiteSeer^x.

Investigated cost of hosting for

Component

Economically reasonable

☑ Refactoring costs

Content

Simplest approach

More complex scenarios require deeper study

Peak load

Support for growth and scalability.

Future Work

- Cost of refactoring particularly for Google App Engine.
- Cost comparisons for other cloud offerings Azure, Eucalyptus.
- Privacy and user issues myCiteSeer and private clouds.
- Technical issues with cross hosting load balancing, latency needed to be addressed.
- Virtualization in SeerSuite, components built with cloud hosting in mind (Federated Services).

Appendix

Assumptions

- Instance sizes are larger then expected load (15% average usage for current infrastructure).
- Instances include libraries and or allow these libraries to be included.
- Maintenance traffic is not accounted (< %1).
- Effort required to maintain extra personnel costs are not included (Assumed to be the same as existing).
- Naïve clustering and load balancing.

DB		Amazo	Google	Initial	REP		Amazo	Google	
Stored	120	12	18	12	Stored	1638 4	163 84	245 76	163 84
Data In	0	0	0		Data In	30	0	3	
Data	2150.4	322.56	258.05		Data	2270.4	340.56	272.45	
Transa	134	34.73	0		Transa	69	17.88	0	
CPU		489 6	72		CPU		489 6	72	
		858.89	348.05				1011.8 °	593.21	
INDEX		Amazo	Google		WS		Amazo	Google	
Stored	32	32	4 8	32	Stored	30	3	4 5	3
Data In	2	0	0.2		Data In	4253.9	0	425.39	
Data	54	8.1	6.48		Data	3072	460.8	368.64	
Transa	101	26.18	0		Transa	20	5.18	0	
CPU		489 6	72		CPU		489 6	72	
		527.08	83.48				1448.1	942.53	
EX		Amazo	Google		CR		Amazo	Google	
Stored	0	0	0	0	Stored	0	0	0	0
Data In	150	0	15		Data In	150	0	15	
Data	30	4.5	3.6		Data	150	22.5	18	
Transa	19	4.92	0		Transa	5	1.30	0	
CPU		489 6	72		CPU		489 6	72	
		499.02	90.6				513.40	105	

SeerSuite Architecture

- Web Application
 - User interaction, supports various interfaces.
 - Built using the java Spring framework.
- Focused Crawler
 - Acquire documents from the web specific to a particular topic
- Document Conversion and Extraction
 - Process acquired documents to enable ingestion into the collection.
- Document Ingestion
 - Add processed documents to the collection.

SeerSuite Architecture

Data Storage

- Store acquired documents persistence, faster access and use.
- Maintenance Services
 - Processes, which help maintain freshness statistics, index, graphs.

Federated Services

 Services, not yet completely part of SeerSuite, but may share the same framework, infrastructure.

Appendix - Digital Libraries

Outline – HotCloud 2010

Introduction

- Motivation/Our Contributions
- SeerSuite
- Component Hosting
- Content Hosting
- Peak Load Hosting
- Future Work
- Conclusions