
CiteSeerx: A Cloud Perspective

Pradeep Teregowda, Bhuvan Urgaonkar, C. Lee Giles
Pennsylvania State University

Problem Definition

 Question: How to effectively move a digital
library, CiteSeerx, into the cloud

 Which sections, components, or subset of CiteSeerx
could be most cost effective to move?

 Our contribution – analysis from an economic
perspective.

 Solve by decomposing the application across
 Components

 Content

 Peak load hosting

SeerSuite - CiteSeerx

 SeerSuite

 Framework for digital libraries
 Flexible, Scalable, Robust, Portable, state of the art machine

learning extractors, open source – use.

 CiteSeerx

 Instance/Application of SeerSuite.

 Collection of

 > 1.6 million documents
 > 30 million citations
 Approximately 2 million hits per day

SeerSuite Architecture

 Web Application

 Focused Crawler

 Document
Conversion and
Extraction

 Document Ingestion

 Data Storage

 Maintenance
Services

 Federated Services

Hosting models

 Component hosting

 SeerSuite is modular by design and architecture, host
individual components across available infrastructure.

 Content hosting

 CiteSeerx provides access to document metadata,
copies and application content

 Host parts or complete set.

 Peak load loading

 Support the application during peak loads

 Support growth of traffic.

Component Hosting

 SeerSuite/CiteSeerx is modular by design,
composed of services which can be hosted in the
cloud.

 Expense of hosting the whole of CiteSeerx is
prohibitive.

 Solution: Host a component or service i.e.,
 Component/service code

 Data on which the component acts

 Interfaces, etc. associated with the component

 Goal: Identify optimal subset/components.

Component Hosting - Costs

 Least expensive option - host the index for cases.

 Most expensive - host web services.

Component Amazon EC2 Google App Engine

Initial Monthly
Costs

Initial Monthly
Costs

Web Services 0 1448.18 0 942.53

Repository 0 1011.88 163.8 593.21

Database 0 858.89 12 348.05

Index 0 527.08 3.1 83.48

Extraction 0 499.02 0 90.6

Crawler 0 513.4 0 105

Component Hosting – Lessons Learned

 Hosting components is reasonable

 Having a service oriented architecture helps

 Amazon EC2

 Computation costs dominate.

 Google App Engine

 Refactoring costs ?

 Refactoring required not just for component, but other services.

 Storage and transfer costs maybe optimized

 A study of data transfer in the application gives insights to costs.

 Approach suitable for meeting fixed budgets

 How many components of an application can be hosted for a fixed budget.

Content Hosting

 Approach: Identify specific content

 Static Web Application content
 Javascript

 Stylesheets

 Images/Graphs.

 Repository content
 PDF files
 Current Size: 1 terabyte

 Database content
 Partition database
 Current size: 120 gigabytes

Analysis of Content Hosting

 Examining the traffic (requests) at peak loads.

 Requests for stylesheets, images, javascript account
for most of the requests.

 The size of these files is 2.2 MB

 Since these files are embedded in almost every
web page, bandwidth consumed 390.3 GB.

 Costs < 142 dollars.

 Simpler to deploy

 Move files to the cloud, update references to them in
the presentation layer.

Content Hosting – Lessons Learned

 Hosting specific content relevant to peak load
scenarios

 Easy to do – minimal refactoring required, affects a
minimal set of components (presentation layer).

 More complex scenarios need to be examined

 Hosting papers from the repository

 Hosting shards of the index

 Database

Peak Load Hosting
 Part of the load can be handled by an instance
hosted in the cloud

 Approach

 Look at various percentiles of the load (90%)

 Consider utilizing the cloud instance only at loads
exceeding these percentiles.

Peak Load Hosting - Costs

 CPU and Data Transfer costs dominate.

Costs Quantity Amazon Google

Initial Setup Data In 1820.4 GB 0 182

Monthy Stored 1820.4 GB 182.4 273.06

Data In 14.78 GB 0 1.48

Data Out 298.7 GB 44.8 35.84

Transaction 368 TPS 9.27 0

CPU 70 HRS 285.6 7

Total (Montly) 521.7 317.38

Peak Load – Lessons Learned

 Hosting only during peak load conditions is
economically feasible.

 Growth potential

 Can be used to handle growth in traffic, instead of
procuring new hardware.

 Hosting a specific component under stress; such as a
database
 In such a case it will cost 385 dollars to host the database in

Amazon EC2.

Conclusions

 SeerSuite/CiteSeerx and different approaches were
proposed for hosting CiteSeerx .

 Investigated cost of hosting for

 Component

 Economically reasonable

 Refactoring costs

 Content

 Simplest approach

 More complex scenarios require deeper study

 Peak load
 Very reasonable

 Support for growth and scalability.

Future Work

 Cost of refactoring – particularly for Google App
Engine.

 Cost comparisons for other cloud offerings – Azure,
Eucalyptus.

 Privacy and user issues – myCiteSeer and private
clouds.

 Technical issues with cross hosting – load balancing,
latency needed to be addressed.

 Virtualization in SeerSuite, components built with
cloud hosting in mind (Federated Services).

Q & A

Appendix

Assumptions

Instance sizes are larger then expected load (15%
average usage for current infrastructure).

Instances include libraries and or allow these libraries
to be included.

Maintenance traffic is not accounted (< %1).

Effort required to maintain – extra personnel costs are
not included (Assumed to be the same as existing).

Naïve clustering and load balancing.

DB Amazo
n

Google Initial REP Amazo
n

Google

Stored 120 12 18 12 Stored 1638.4 163.84 245.76 163.84
Data In 0 0 0 Data In 30 0 3

Data
Out

2150.4 322.56 258.05 Data
Out

2270.4 340.56 272.45

Transa
ctions

134 34.73 0 Transa
ctions

69 17.88 0

CPU 489.6 72 CPU 489.6 72
858.89 348.05 1011.8

8
593.21

INDEX Amazo
n

Google WS Amazo
n

Google

Stored 32 3.2 4.8 3.2 Stored 30 3 4.5 3
Data In 2 0 0.2 Data In 4253.9 0 425.39

Data
Out

54 8.1 6.48 Data
Out

3072 460.8 368.64

Transa
ctions

101 26.18 0 Transa
ctions

20 5.18 0

CPU 489.6 72 CPU 489.6 72
527.08 83.48 1448.1

8
942.53

EX Amazo
n

Google CR Amazo
n

Google

Stored 0 0 0 0 Stored 0 0 0 0
Data In 150 0 15 Data In 150 0 15

Data
Out

30 4.5 3.6 Data
Out

150 22.5 18

Transa
ctions

19 4.92 0 Transa
ctions

5 1.30 0

CPU 489.6 72 CPU 489.6 72
499.02 90.6 513.40 105

SeerSuite Architecture
 Web Application

 User interaction, supports various interfaces.

 Built using the java Spring framework.

 Focused Crawler

 Acquire documents from the web specific to a
particular topic

 Document Conversion and Extraction

 Process acquired documents to enable ingestion
into the collection.

 Document Ingestion

 Add processed documents to the collection.

SeerSuite Architecture

 Data Storage

 Store acquired documents – persistence, faster
access and use.

 Maintenance Services

 Processes, which help maintain freshness –
statistics, index, graphs.

 Federated Services

 Services, not yet completely part of SeerSuite, but
may share the same framework, infrastructure.

Appendix - Digital Libraries

Outline – HotCloud 2010

 Introduction

 Motivation/Our Contributions

 SeerSuite

 Component Hosting

 Content Hosting

 Peak Load Hosting

 Future Work

 Conclusions

