
Alan Shieh
Cornell University

Srikanth Kandula
Albert Greenberg
Changhoon Kim
Microsoft Research

Seawall: Performance Isolation for Cloud
Datacenter Networks

Cloud datacenters: Benefits and obstacles

  Moving to the cloud has manageability, costs & elasticity benefits
  Selfish tenants can monopolize resources
  Compromised & malicious tenants can degrade system performance

  Problems already occur

Spammers on AWS
Bitbucket DoS attack

Runaway client overloads storage

Goals

Existing mechanisms are insufficient for cloud

  Isolate tenants to avoid collateral damage
  Control each tenant’s share of network
  Utilize all network capacity

  Constraints
 Cannot trust tenant code
 Minimize network reconfiguration during VM churn
 Minimize end host and network cost

  In-network queuing and rate limiting
Existing mechanisms are insufficient

HV

Guest
HV

Guest
Not scalable. Can underutilize links.

Existing mechanisms are insufficient
  In-network queuing and rate limiting

  Network-to-source congestion control (Ethernet QCN)

HV

Guest
HV

Guest

Throttle send rate

Detect
congestion

HV

Guest
HV

Guest
Not scalable. Can underutilize links.

Requires new hardware. Inflexible policy.

  In-network queuing and rate limiting

  Network-to-source congestion control (Ethernet QCN)

  End-to-end congestion control (TCP)

HV

Guest
HV

Guest

HV

Guest
HV

Guest

HV

Guest

HV

Guest

Throttle send rate

Existing mechanisms are insufficient

Detect
congestion

Not scalable. Can underutilize links.

Requires new hardware. Inflexible policy.

Poor control over allocation. Guests can change TCP stack.

Seawall = Congestion controlled,
hypervisor-to-hypervisor tunnels

Benefits
  Scales to # of tenants, flows, and churn
  Don’t need to trust tenant

  Works on commodity hardware
  Utilizes network links efficiently
  Achieves good performance

(1 Gb/s line rate & low CPU overhead)

HV

Guest

HV

Guest

Components of Seawall

Hypervisor kernel

Guest Guest Root

  Seawall rate controller allocates network resources for each
output flow
 Goal: achieve utilization and division

  Seawall ports enforce decisions of rate controller
  Lie on forwarding path
 One per VM source/destination pair

SW-port

SW-port

SW-rate controller

SW-port

Seawall port
  Rate limit transmit traffic
  Rewrite and monitor traffic to support congestion control
  Exchanges congestion feedback and rate info with controller

Congestion
detector

Guest
Inspect
packets

Tx
Rate limiter

Rewrite
packets

New rate

SW-rate controller

Congestion info

Rate controller:
Operation and control loop

  Algorithm divides network proportional to weights & is max/min fair
  Efficiency: AIMD with faster increase

  Traffic-agnostic allocation:
Per-link share is same regardless of # of flows & destinations

Source

Reduce rate
SW-rate controller

SW-port

Dest SW-rate controller

SW-port

Congestion info

1 4 2 3

X

1,2,4

  Rate controller adjusts rate limit based on presence and absence of loss

Got 1,2,4 Congestion feedback

VM 1 VM 2 VM 3 (weight = 2)

VM 2 flow 1

VM 2 flow 2 VM 2 flow 3
VM 3:
~50%

VM 2:
~25%

VM 1:
~25%

Improving SW-port performance
  How to add congestion control header to packets?
  Naïve approach: Use encapsulation, but poses problems

 More code in SW-Port
  Breaks hardware optimizations that depend on header format

  Packet ACLs: Filter on TCP 5-tuple
  Segmentation offload: Parse TCP header to split packets
  Load balancing: Hash on TCP 5-tuple to spray packets (e.g. RSS)

Encapsulation

“Bit stealing” solution:
Use spare bits from existing headers
  Constraints on header modifications

 Network can route & process packet
 Receiver can reconstruct for guest

  Other protocols: might need paravirtualization.

IP IP-ID

TCP Timestamp option

0x08 0x0a TSval TSecr Seq #

#
 p

ac
ke

ts

Se
q

#

Constant

Unused

“Bit stealing” solution:
Performance improvement

Encapsulation Bit stealing

 Throughput: 280 Mb/s => 843 Mb/s

Supporting future networks
  Hypervisor vSwitch scales to 1 Gbps, but may be bottleneck for

10 Gbps
  Multiple approaches to scale to 10 Gbps

 Hypervisor & multi-core optimizations
  Bypass hypervisor with direct I/O (e.g. SR-IOV)
 Virtualization-aware physical switch (e.g. NIV, VEPA)

  While efficient, currently direct I/O loses policy control
  Future SR-IOV NICs support classifiers, filters, rate limiters

SW-port
Congestion detector

Guest

Tx
Rate limiter

Inspect packets

Rewrite packets

SW-rate controller

Guest

I/
O

 v
ia

 H
V

SW-port
Congestion detector DRR

Tx counter

Rx counter

D
ir

ec
t I

/O

Summary
  Without performance isolation, no protection in cloud against

selfish, compromised & malicious tenants
  Hypervisor rate limiters + end-to-end rate controller provide

isolation, control, and efficiency
  Prototype achieves performance and security on commodity

hardware

Preserving performance isolation after
hypervisor compromise

  Compromised hypervisor at source can flood network
  Solution:

Use network filtering to isolate sources that violate congestion control
 Destinations act as detector

BAD

SW enforcer

X

Isolate

is bad

  Pitfall: If destination is compromised, danger of DoS from
false accusations

  Refinement: Apply least privilege (i.e. fine-grained filtering)

SW enforcer

X

Isolate

is bad

BAD

Drop

Preserving performance isolation after
hypervisor compromise

